Yiyang Li, Min-Ho Kim, Zhangdi Xie, Jinhong Min, Yuzhang Li
{"title":"Microelectrodes for Battery Materials","authors":"Yiyang Li, Min-Ho Kim, Zhangdi Xie, Jinhong Min, Yuzhang Li","doi":"10.1021/acsnano.4c12573","DOIUrl":null,"url":null,"abstract":"The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials. Microelectrodes allow us to explore spatiotemporal regimes that are not accessible with macroscopic electrodes. Temporally, microelectrodes can generate ultrahigh current densities, enabling the distinction between solid electrolyte interphase (SEI) kinetics and metal deposition kinetics. Spatially, they confine electrochemistry to single particles, allowing us to study their intrinsic properties. We outline future opportunities for the use of microelectrodes for future studies of battery systems. We propose their use for analyzing the electrochemistry of other reactive metals and exploring the potential of combining them with in situ imaging techniques.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"93 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials. Microelectrodes allow us to explore spatiotemporal regimes that are not accessible with macroscopic electrodes. Temporally, microelectrodes can generate ultrahigh current densities, enabling the distinction between solid electrolyte interphase (SEI) kinetics and metal deposition kinetics. Spatially, they confine electrochemistry to single particles, allowing us to study their intrinsic properties. We outline future opportunities for the use of microelectrodes for future studies of battery systems. We propose their use for analyzing the electrochemistry of other reactive metals and exploring the potential of combining them with in situ imaging techniques.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.