Ultrawide Bandgap Diamond/ε-Ga2O3 Heterojunction pn Diodes with Breakdown Voltages over 3 kV

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianguo Zhang, Ningtao Liu, Li Chen, Xun Yang, Haizhong Guo, Zefeng Wang, Ming-Qian Yuan, Xue-Jun Yan, Jianqun Yang, Xingji Li, Chongxin Shan, Jichun Ye, Wenrui Zhang
{"title":"Ultrawide Bandgap Diamond/ε-Ga2O3 Heterojunction pn Diodes with Breakdown Voltages over 3 kV","authors":"Jianguo Zhang, Ningtao Liu, Li Chen, Xun Yang, Haizhong Guo, Zefeng Wang, Ming-Qian Yuan, Xue-Jun Yan, Jianqun Yang, Xingji Li, Chongxin Shan, Jichun Ye, Wenrui Zhang","doi":"10.1021/acs.nanolett.4c05446","DOIUrl":null,"url":null,"abstract":"Robust bipolar devices based on exclusively ultrawide bandgap (UWBG) semiconductors are highly desired for advanced power electronics. The heterojunction strategy has been a prevailing method for fabricating a bipolar device due to the lack of effective bipolar doping in the same UWBG material. Here, we demonstrate a unique heterojunction design integrating the p-type diamond and n-type ε-Ga<sub>2</sub>O<sub>3</sub> that achieves remarkable breakdown voltages surpassing 3000 V. Despite the lattice mismatch, the heteroepitaxial ε-Ga<sub>2</sub>O<sub>3</sub> film is established on the diamond substrate, forming an atomically sharp interface with C–O–Ga bonding and enabling the O-terminated diamond surface for constructing an effective rectifying heterojunction. The ultra-high-quality interface, together with the lightly doped diamond as the drift layer, largely weakens the commonly met electric field crowding effect in power diodes and provides a cost-effective thermal management route. This study provides an efficient heterojunction design to realize the potential of UWBG semiconductors for ultra-high-power applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"87 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05446","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Robust bipolar devices based on exclusively ultrawide bandgap (UWBG) semiconductors are highly desired for advanced power electronics. The heterojunction strategy has been a prevailing method for fabricating a bipolar device due to the lack of effective bipolar doping in the same UWBG material. Here, we demonstrate a unique heterojunction design integrating the p-type diamond and n-type ε-Ga2O3 that achieves remarkable breakdown voltages surpassing 3000 V. Despite the lattice mismatch, the heteroepitaxial ε-Ga2O3 film is established on the diamond substrate, forming an atomically sharp interface with C–O–Ga bonding and enabling the O-terminated diamond surface for constructing an effective rectifying heterojunction. The ultra-high-quality interface, together with the lightly doped diamond as the drift layer, largely weakens the commonly met electric field crowding effect in power diodes and provides a cost-effective thermal management route. This study provides an efficient heterojunction design to realize the potential of UWBG semiconductors for ultra-high-power applications.

Abstract Image

击穿电压超过 3 kV 的超宽带隙金刚石/ε-Ga2O3 异质结 pn 二极管
基于超宽带隙(UWBG)半导体的稳健双极器件是先进电力电子器件的迫切需求。由于在同一UWBG材料中缺乏有效的双极掺杂,异质结策略一直是制造双极器件的主流方法。在这里,我们展示了一种独特的异质结设计,将p型金刚石和n型ε-Ga2O3集成在一起,实现了超过3000 V的显著击穿电压。尽管晶格不匹配,但在金刚石衬底上建立了异质外延ε-Ga2O3薄膜,形成了与C-O-Ga键合的原子锋利界面,使o端金刚石表面能够构建有效的整流异质结。超高质量的界面加上轻掺杂的金刚石作为漂移层,大大削弱了功率二极管中常见的电场拥挤效应,提供了一种经济有效的热管理途径。该研究提供了一种高效的异质结设计,以实现UWBG半导体在超高功率应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信