{"title":"Entropy Manipulation of SrTiO3 Perovskite for Enhanced Thermoelectric and Mechanical Properties","authors":"Hongxin Wang, Shanshan Xu, Tong’an Bu, Xinlei Wang, Panpan Lyu, Luchao Ren, Cuncheng Li, Mingwei Zhang, Wenyu Zhao","doi":"10.1021/acs.inorgchem.4c03968","DOIUrl":null,"url":null,"abstract":"Reducing the thermal conductivity while maintaining excellent electrical transport properties is crucial for enhancing the thermoelectric performance of SrTiO<sub>3</sub>-based perovskites. Here, we successfully achieved this goal through precisely manipulating the configurational entropy. A series of Ca<sub>0.25</sub>Nd<sub>0.25</sub>Sr<sub>0.5–<i>x</i></sub> Ba<sub><i>x</i></sub>TiO<sub>3</sub> (<i>x</i> = 0, 0.05, 0.15, 0.25) ceramics were successfully synthesized using the solid-state reaction combined with graphite burial sintering. It was discovered that structural defects from competing elements in the A-site not only slowed diffusion and hindered grain growth but also increased oxygen vacancies by creating additional gas transmission channels. The gradual decrease in carrier mobility with increasing entropy resulted in the degradation of electrical conductivity, while the Seebeck coefficient experienced a large enhancement due to band modification and increased carrier scattering. Meanwhile, multiscale defects, including point defects, local strain fields, dislocations, and grain boundaries, effectively scatter phonons, leading to a low lattice thermal conductivity of 1.73 W·m<sup>–1</sup>·K<sup>–1</sup>. Consequently, the sample with <i>x</i> = 0.15 exhibited a peak <i>ZT</i> of 0.15 at 900 K, reflecting a 148% enhancement compared to that of the matrix. In addition, the hardness increases with configurational entropy because of the chemical disorder, grain refinement, and increased defect concentration. The work emphasizes the importance of precise manipulation of configurational entropy, offering valuable insights for optimizing thermoelectric materials through entropy engineering strategy.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"6 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03968","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing the thermal conductivity while maintaining excellent electrical transport properties is crucial for enhancing the thermoelectric performance of SrTiO3-based perovskites. Here, we successfully achieved this goal through precisely manipulating the configurational entropy. A series of Ca0.25Nd0.25Sr0.5–x BaxTiO3 (x = 0, 0.05, 0.15, 0.25) ceramics were successfully synthesized using the solid-state reaction combined with graphite burial sintering. It was discovered that structural defects from competing elements in the A-site not only slowed diffusion and hindered grain growth but also increased oxygen vacancies by creating additional gas transmission channels. The gradual decrease in carrier mobility with increasing entropy resulted in the degradation of electrical conductivity, while the Seebeck coefficient experienced a large enhancement due to band modification and increased carrier scattering. Meanwhile, multiscale defects, including point defects, local strain fields, dislocations, and grain boundaries, effectively scatter phonons, leading to a low lattice thermal conductivity of 1.73 W·m–1·K–1. Consequently, the sample with x = 0.15 exhibited a peak ZT of 0.15 at 900 K, reflecting a 148% enhancement compared to that of the matrix. In addition, the hardness increases with configurational entropy because of the chemical disorder, grain refinement, and increased defect concentration. The work emphasizes the importance of precise manipulation of configurational entropy, offering valuable insights for optimizing thermoelectric materials through entropy engineering strategy.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.