Bright Quantum-Grade Fluorescent Nanodiamonds

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-16 DOI:10.1021/acsnano.4c03424
Keisuke Oshimi, Hitoshi Ishiwata, Hiromu Nakashima, Sara Mandić, Hina Kobayashi, Minori Teramoto, Hirokazu Tsuji, Yoshiki Nishibayashi, Yutaka Shikano, Toshu An, Masazumi Fujiwara
{"title":"Bright Quantum-Grade Fluorescent Nanodiamonds","authors":"Keisuke Oshimi, Hitoshi Ishiwata, Hiromu Nakashima, Sara Mandić, Hina Kobayashi, Minori Teramoto, Hirokazu Tsuji, Yoshiki Nishibayashi, Yutaka Shikano, Toshu An, Masazumi Fujiwara","doi":"10.1021/acsnano.4c03424","DOIUrl":null,"url":null,"abstract":"Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6–1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less <sup>12</sup>C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (<i>E</i>) was reduced by 2–3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of <i>T</i><sub>1</sub> = 0.68 ms and <i>T</i><sub>2</sub> = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended <i>T</i><sub>2</sub> relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mn&gt;0.28&lt;/mn&gt;&lt;mspace width=\"0.25em\" /&gt;&lt;mi mathvariant=\"normal\"&gt;K&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msqrt&gt;&lt;mi&gt;Hz&lt;/mi&gt;&lt;/msqrt&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 5.685em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 5.173em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.423em, 1005.17em, 3.014em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">0.28</span><span style=\"height: 0em; vertical-align: 0em; width: 0.287em; display: inline-block; overflow: hidden;\"></span><span style=\"font-family: STIXMathJax_Main;\">K<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.003em;\"></span></span><span style=\"font-family: STIXMathJax_Main;\">/</span><span><span style=\"display: inline-block; position: relative; width: 2.105em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1001.14em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\"><span><span style=\"font-family: STIXMathJax_Main;\">Hz</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.526em, 1001.2em, 3.923em, -999.997em); top: -4.599em; left: 0.912em;\"><span style=\"display: inline-block; position: relative; width: 1.196em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0.855em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.23em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.401em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.628em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.28</mn><mspace width=\"0.25em\"></mspace><mi mathvariant=\"normal\">K</mi><mo>/</mo><msqrt><mi>Hz</mi></msqrt></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mn>0.28</mn><mspace width=\"0.25em\"></mspace><mi mathvariant=\"normal\">K</mi><mo>/</mo><msqrt><mi>Hz</mi></msqrt></math></script>. The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"37 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c03424","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6–1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2–3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28K/Hz. The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications.

Abstract Image

作为探测生物样本的量子纳米传感器,可光学访问的自旋活性纳米材料前景广阔。然而,实现这些材料的生物成像级亮度和高质量自旋特性具有挑战性,阻碍了它们在量子生物传感中的应用。在这里,我们展示了含有 0.6-1.3-ppm 带负电荷氮空位(NV)中心的高亮度荧光纳米金刚石(NDs),其方法是通过富集无自旋的 12C 碳同位素和减少置换氮自旋杂质来进行自旋环境工程。这种 NDs 很容易被引入培养细胞,并显示出更好的光检测磁共振(ODMR)光谱;峰分裂(E)降低了 2-3 MHz,微波激发功率降低了 20 倍,才能达到 3% 的 ODMR 对比度,与传统的 Ib 型 NDs 相当。它们显示的平均自旋舒张时间分别为 T1 = 0.68 ms 和 T2 = 3.2 μs(最大值分别为 1.6 ms 和 5.4 μs),分别比 Ib 型钕铁硼长 5 倍和 11 倍。此外,这些 ND 的 T2 弛豫时间延长,使得射出噪声限制温度测量的灵敏度约为 0.28K/Hz⎯⎯⎯⎯⎯√0.28K/Hz0.28K/Hz。大块类 NV 自旋特性与增强荧光的结合大大提高了基于 ND 的量子传感器在生物应用中的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信