Guang Huang, Rhiannon Stevens, Devon G. Hucek, Trupta Purohit, Shuangjiang Li, Hongzhi Miao, Elise Trost, Geoff Hewett, Bradley Clegg, Se Ra Park, Krishani Rajanayake, Bo Wen, Duxin Sun, Tomasz Cierpicki, Jolanta Grembecka
{"title":"Structure-Based Development of Novel Spiro-Piperidine ASH1L Inhibitors","authors":"Guang Huang, Rhiannon Stevens, Devon G. Hucek, Trupta Purohit, Shuangjiang Li, Hongzhi Miao, Elise Trost, Geoff Hewett, Bradley Clegg, Se Ra Park, Krishani Rajanayake, Bo Wen, Duxin Sun, Tomasz Cierpicki, Jolanta Grembecka","doi":"10.1021/acs.jmedchem.4c01673","DOIUrl":null,"url":null,"abstract":"The absent, small, or homeotic-like 1 (ASH1L) protein is a histone lysine methyltransferase that plays a crucial role in various cancers, including leukemia. Despite representing an attractive therapeutic target, only one class of ASH1L inhibitors was identified to date. Herein, we report development of advanced ASH1L inhibitors targeting the catalytic SET domain, which were designed to access previously unexplored binding pocket on ASH1L. Extensive medicinal chemistry combined with structure-based design led to identification of <b>66s</b> (<b>AS-254s</b>), a highly potent and selective ASH1L inhibitor (IC<sub>50</sub> = 94 nM), representing substantially improved inhibitory activity over previously reported compounds targeting ASH1L. Furthermore, <b>66s</b> effectively blocked cell proliferation and induced apoptosis and differentiation in leukemia cells harboring <i>MLL1</i> translocations. Overall, this work provides a high-quality chemical probe targeting the catalytic SET domain of ASH1L with increased inhibitory activity and cellular efficacy to study biological functions of ASH1L and potentially to develop novel anticancer therapeutics.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"92 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01673","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The absent, small, or homeotic-like 1 (ASH1L) protein is a histone lysine methyltransferase that plays a crucial role in various cancers, including leukemia. Despite representing an attractive therapeutic target, only one class of ASH1L inhibitors was identified to date. Herein, we report development of advanced ASH1L inhibitors targeting the catalytic SET domain, which were designed to access previously unexplored binding pocket on ASH1L. Extensive medicinal chemistry combined with structure-based design led to identification of 66s (AS-254s), a highly potent and selective ASH1L inhibitor (IC50 = 94 nM), representing substantially improved inhibitory activity over previously reported compounds targeting ASH1L. Furthermore, 66s effectively blocked cell proliferation and induced apoptosis and differentiation in leukemia cells harboring MLL1 translocations. Overall, this work provides a high-quality chemical probe targeting the catalytic SET domain of ASH1L with increased inhibitory activity and cellular efficacy to study biological functions of ASH1L and potentially to develop novel anticancer therapeutics.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.