Florian Scheler, Silvia Mariotti, Daniele Mantione, Sahil Shah, Dorothee Menzel, Hans Köbler, Maxim Simmonds, Thomas W. Gries, Jona Kurpiers, Viktor Škorjanc, Jinzhao Li, Amran Al-Ashouri, Philipp Wagner, Steven P. Harvey, Fengjiu Yang, Marin Rusu, Thomas Unold, Bernd Stannowski, Kai Zhu, Felix Lang, Dieter Neher, Eva Unger, Antonio Abate, David Mecerreyes, Martin Stolterfoht, Eike Köhnen, Lars Korte, Marko Topič, Steve Albrecht
{"title":"Correlation of Band Bending and Ionic Losses in 1.68 eV Wide Band Gap Perovskite Solar Cells","authors":"Florian Scheler, Silvia Mariotti, Daniele Mantione, Sahil Shah, Dorothee Menzel, Hans Köbler, Maxim Simmonds, Thomas W. Gries, Jona Kurpiers, Viktor Škorjanc, Jinzhao Li, Amran Al-Ashouri, Philipp Wagner, Steven P. Harvey, Fengjiu Yang, Marin Rusu, Thomas Unold, Bernd Stannowski, Kai Zhu, Felix Lang, Dieter Neher, Eva Unger, Antonio Abate, David Mecerreyes, Martin Stolterfoht, Eike Köhnen, Lars Korte, Marko Topič, Steve Albrecht","doi":"10.1002/aenm.202404726","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) are promising for high-efficiency tandem applications, but their long-term stability, particularly due to ion migration, remains a challenge. Despite progress in stabilizing PSCs, they still fall short compared to mature technologies like silicon. This study explores how different piperazinium salt treatments using iodide, chloride, tosylate, and bistriflimide anions affect the energetics, carrier dynamics, and stability of 1.68 eV bandgap PSCs. Chloride-based treatments achieved the highest power conversion efficiency (21.5%) and open-circuit voltage (1.28 V), correlating with stronger band bending and n-type character at the surface. At the same time, they showed reduced long-term stability due to increased ionic losses. Tosylate-treated devices offered the best balance, retaining 96.4% efficiency after 1000 h (ISOS-LC-1I). These findings suggest that targeted surface treatments can enhance both efficiency and stability in PSCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"22 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404726","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) are promising for high-efficiency tandem applications, but their long-term stability, particularly due to ion migration, remains a challenge. Despite progress in stabilizing PSCs, they still fall short compared to mature technologies like silicon. This study explores how different piperazinium salt treatments using iodide, chloride, tosylate, and bistriflimide anions affect the energetics, carrier dynamics, and stability of 1.68 eV bandgap PSCs. Chloride-based treatments achieved the highest power conversion efficiency (21.5%) and open-circuit voltage (1.28 V), correlating with stronger band bending and n-type character at the surface. At the same time, they showed reduced long-term stability due to increased ionic losses. Tosylate-treated devices offered the best balance, retaining 96.4% efficiency after 1000 h (ISOS-LC-1I). These findings suggest that targeted surface treatments can enhance both efficiency and stability in PSCs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.