{"title":"Occurrence, Emission, and Transport of Tire and Road Wear Particles across Four Environmental Compartments along Ring Road Networks in Beijing","authors":"Yifan Ren, Wenhui Li, Peng Zhou, Haoran Wu, Lei Yu, Ruojin Wang, Chen Qu, Yanjun Zhao, Jiemin Liu, Chuandong Wu","doi":"10.1021/acs.est.4c08466","DOIUrl":null,"url":null,"abstract":"Tire and road wear particles (TRWPs) are an appreciable source of microplastics (MPs); however, knowledge of their large-scale occurrence and mass flux based on robust sampling and quantification is limited. Herein, the first city-wide survey of TRWPs across environmental compartments (road dust, snowbank, water, and sediment from rivers and lakes) along four ring roads (beltways) in Beijing was performed. TRWP concentrations (<i>n</i> = 74) were quantified using bonded-sulfur as a marker to reveal the city-wide spatial distributions and adopted to establish a framework estimating TRWP emission factors (EFs) and mass flux from generation to remote atmospheric, terrestrial, and aquatic transport. The TRWP concentrations were 0.46 × 10<sup>4</sup>–3.55 × 10<sup>4</sup> μg/g (road dust), 0.65–46.18 mg/L (water), 0.28 × 10<sup>4</sup>–1.79 × 10<sup>4</sup> μg/g (sediment), and 9.46–19.12 mg/L (snowbank) and were highly related to nearby traffic conditions. Based on total EFs (34.4–288.5 mg/vKT) and airborne EFs (6.2–17.2 mg/vKT) calculated from the preceding concentrations, the TRWP emissions in Beijing were determined as 1.28 × 10<sup>4</sup> t/a. Among them, 61.3% was eventually disposed of in landfills owing to frequent road sweeping and high runoff treatment efficiency and 18.1% was stranded on the roadside; nevertheless, 11.9% escaped to freshwater systems and 5.7 and 3.0% airborne transported to remote land and ocean, respectively. This study provides new insights into the emissions and fate of TRWPs.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"47 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08466","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tire and road wear particles (TRWPs) are an appreciable source of microplastics (MPs); however, knowledge of their large-scale occurrence and mass flux based on robust sampling and quantification is limited. Herein, the first city-wide survey of TRWPs across environmental compartments (road dust, snowbank, water, and sediment from rivers and lakes) along four ring roads (beltways) in Beijing was performed. TRWP concentrations (n = 74) were quantified using bonded-sulfur as a marker to reveal the city-wide spatial distributions and adopted to establish a framework estimating TRWP emission factors (EFs) and mass flux from generation to remote atmospheric, terrestrial, and aquatic transport. The TRWP concentrations were 0.46 × 104–3.55 × 104 μg/g (road dust), 0.65–46.18 mg/L (water), 0.28 × 104–1.79 × 104 μg/g (sediment), and 9.46–19.12 mg/L (snowbank) and were highly related to nearby traffic conditions. Based on total EFs (34.4–288.5 mg/vKT) and airborne EFs (6.2–17.2 mg/vKT) calculated from the preceding concentrations, the TRWP emissions in Beijing were determined as 1.28 × 104 t/a. Among them, 61.3% was eventually disposed of in landfills owing to frequent road sweeping and high runoff treatment efficiency and 18.1% was stranded on the roadside; nevertheless, 11.9% escaped to freshwater systems and 5.7 and 3.0% airborne transported to remote land and ocean, respectively. This study provides new insights into the emissions and fate of TRWPs.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.