Yuhan Xu, Tianzhu Wang, Zaiming Chen, Yungui Li, Dan Huang, Fangjie Guo, Meizhen Wang
{"title":"Hydrolysis of p-Phenylenediamine Antioxidants: The Reaction Mechanism, Prediction Model, and Potential Impact on Aquatic Toxicity","authors":"Yuhan Xu, Tianzhu Wang, Zaiming Chen, Yungui Li, Dan Huang, Fangjie Guo, Meizhen Wang","doi":"10.1021/acs.est.4c10227","DOIUrl":null,"url":null,"abstract":"While <i>p</i>-phenylenediamine antioxidants (PPDs) pose potential risks to aquatic ecosystems, their environmental persistence and transformation remain ambiguous due to the undefined nature of PPD C–N bond hydrolysis. Here, we investigated the hydrolysis patterns of PPDs by analyzing their hydrolysis half-lives, hydrolysis products around neutral pH (pH 6.0–7.7), and the role of atoms within the C–N bonds in PPDs. Hydrolysis preferentially targets the aromatic secondary amine N with the strongest proton affinity and the C atom of C–N with the highest nucleophilic-attack reactivity. The hydrolysis half-life (<i>t</i><sub>1/2</sub>) shortens when the maximum proton affinity of N increases. These results are supported by theoretical calculations, demonstrating a hydrolysis reaction propelled by proton transfer from water to N and complemented by aromatic nucleophilic substitution of N in C–N by water hydroxyl. With the experimental results and the atom reactivity-based predictive model, the <i>t</i><sub>1/2</sub> around neutral pH for 60 PPDs (monitored in environment, commercially available, or under investigation) is determined, showing variations ranging from 2.2 h to 47 days. The model prediction of primary C–N hydrolysis is confirmed through typical PPDs. With the elucidated mechanism and developed model, this research provides new insights into PPD hydrolysis, underscoring its significance in delineating environmental impacts.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"4 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10227","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
While p-phenylenediamine antioxidants (PPDs) pose potential risks to aquatic ecosystems, their environmental persistence and transformation remain ambiguous due to the undefined nature of PPD C–N bond hydrolysis. Here, we investigated the hydrolysis patterns of PPDs by analyzing their hydrolysis half-lives, hydrolysis products around neutral pH (pH 6.0–7.7), and the role of atoms within the C–N bonds in PPDs. Hydrolysis preferentially targets the aromatic secondary amine N with the strongest proton affinity and the C atom of C–N with the highest nucleophilic-attack reactivity. The hydrolysis half-life (t1/2) shortens when the maximum proton affinity of N increases. These results are supported by theoretical calculations, demonstrating a hydrolysis reaction propelled by proton transfer from water to N and complemented by aromatic nucleophilic substitution of N in C–N by water hydroxyl. With the experimental results and the atom reactivity-based predictive model, the t1/2 around neutral pH for 60 PPDs (monitored in environment, commercially available, or under investigation) is determined, showing variations ranging from 2.2 h to 47 days. The model prediction of primary C–N hydrolysis is confirmed through typical PPDs. With the elucidated mechanism and developed model, this research provides new insights into PPD hydrolysis, underscoring its significance in delineating environmental impacts.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.