Engineering Programmable Electroactive Living Materials for Highly Efficient Uranium Capture and Accumulation

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Feng-He Li, Zi-Han Liang, Hong Sun, Qiang Tang, Han-Qing Yu
{"title":"Engineering Programmable Electroactive Living Materials for Highly Efficient Uranium Capture and Accumulation","authors":"Feng-He Li, Zi-Han Liang, Hong Sun, Qiang Tang, Han-Qing Yu","doi":"10.1021/acs.est.4c07276","DOIUrl":null,"url":null,"abstract":"Uranium is the primary fuel for nuclear energy, critical for sustainable, carbon-neutral energy transitions. However, limited terrestrial resources and environmental risks from uranium contamination require innovative immobilization and recovery solutions. In this work, we present a novel uranium recovery method using programmable electroactive living materials (ELMs). Utilizing <i>Shewanella oneidensis</i>, this approach leverages the intrinsic extracellular electron transfer capability of exoelectrogenic species, combining their adaptability and programmability with the robustness of engineered multicellular systems. These exoelectrogenic cells were endowed to selectively capture and enhance U(VI) reduction by expressing uranyl-binding proteins, coupled with a reconfigured transmembrane Mtr electron nanoconduit. By incorporating biofilm-promoting circuits, we improved cell-to-cell interactions and biofilm formation, enabling the stable assembly of ELMs with robust structural integrity. The ELMs demonstrated superior electrogenic activity, achieving a 3.30-fold increase in current density and a 3.15-fold increase in voltage output compared to controls in microbial electrochemical and fuel cells. When applied for uranium recovery, the ELMs exhibited robust U(VI) capture, reduction, and accumulation capabilities, with a maximum capacity of 808.42 μmol/g. This work not only provides a versatile and environmentally friendly solution for uranium recovery, but also highlights the potential of ELMs in sustainable environmental and energy technologies.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"19 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07276","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium is the primary fuel for nuclear energy, critical for sustainable, carbon-neutral energy transitions. However, limited terrestrial resources and environmental risks from uranium contamination require innovative immobilization and recovery solutions. In this work, we present a novel uranium recovery method using programmable electroactive living materials (ELMs). Utilizing Shewanella oneidensis, this approach leverages the intrinsic extracellular electron transfer capability of exoelectrogenic species, combining their adaptability and programmability with the robustness of engineered multicellular systems. These exoelectrogenic cells were endowed to selectively capture and enhance U(VI) reduction by expressing uranyl-binding proteins, coupled with a reconfigured transmembrane Mtr electron nanoconduit. By incorporating biofilm-promoting circuits, we improved cell-to-cell interactions and biofilm formation, enabling the stable assembly of ELMs with robust structural integrity. The ELMs demonstrated superior electrogenic activity, achieving a 3.30-fold increase in current density and a 3.15-fold increase in voltage output compared to controls in microbial electrochemical and fuel cells. When applied for uranium recovery, the ELMs exhibited robust U(VI) capture, reduction, and accumulation capabilities, with a maximum capacity of 808.42 μmol/g. This work not only provides a versatile and environmentally friendly solution for uranium recovery, but also highlights the potential of ELMs in sustainable environmental and energy technologies.

Abstract Image

设计可编程电活性活体材料,实现高效铀捕获和积累
铀是核能的主要燃料,对可持续的碳中性能源转型至关重要。然而,有限的陆地资源和铀污染带来的环境风险需要创新的固定和回收解决方案。在这项工作中,我们提出了一种利用可编程电活性活体材料(ELMs)的新型铀回收方法。利用 Shewanella oneidensis,这种方法充分利用了外电源物种固有的胞外电子传递能力,将其适应性和可编程性与工程多细胞系统的稳健性结合起来。通过表达铀酰结合蛋白,再加上重新配置的跨膜 Mtr 电子纳米导管,这些外生电子细胞被赋予了选择性捕获和增强六价铀还原的能力。通过加入生物膜促进电路,我们改善了细胞间的相互作用和生物膜的形成,使具有强大结构完整性的 ELMs 得以稳定组装。与微生物电化学和燃料电池中的对照组相比,ELMs 的电流密度增加了 3.30 倍,电压输出增加了 3.15 倍,显示出卓越的电能活性。在应用于铀回收时,ELMs 表现出强大的六(VI)铀捕获、还原和积累能力,最大容量为 808.42 μmol/g。这项工作不仅为铀回收提供了一种多功能的环境友好型解决方案,而且凸显了 ELM 在可持续环境和能源技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信