Enhancing Power Conversion Efficiency of Perovskite Solar Cells Through Machine Learning Guided Experimental Strategies

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Antai Yang, Yonggui Sun, Jingzi Zhang, Fei Wang, Chengquan Zhong, Chen Yang, Hanlin Hu, Jiakai Liu, Xi Lin
{"title":"Enhancing Power Conversion Efficiency of Perovskite Solar Cells Through Machine Learning Guided Experimental Strategies","authors":"Antai Yang,&nbsp;Yonggui Sun,&nbsp;Jingzi Zhang,&nbsp;Fei Wang,&nbsp;Chengquan Zhong,&nbsp;Chen Yang,&nbsp;Hanlin Hu,&nbsp;Jiakai Liu,&nbsp;Xi Lin","doi":"10.1002/adfm.202410419","DOIUrl":null,"url":null,"abstract":"<p>Predicting the power conversion efficiency (PCE) using machine learning (ML) can effectively accelerate the experimental process of perovskite solar cells (PSCs). In this study, a high-quality dataset containing 2079 experimental PSCs is established to predict PCE values using an accurate ML model, achieving an impressive coefficient of determination (<i>R</i><sup>2</sup>) value of 0.76. In the 12 validation experiments with PSCs, the average absolute error between the observed and predicted PCE values is only 1.6%. Leveraging the recommended improvement solutions from the ML model, the device's PCE to 25.01% in experimental PSCs is successfully enhanced, thus truly realizing the objective of machine learning-guided experiments. In addition, by improving the PCE of specific devices, the predicted value can reach 28.19%. The ML model has provided feasible strategies for experimentally improving the PCE of PSCs, which play a crucial role in achieving PCE breakthroughs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 4","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202410419","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the power conversion efficiency (PCE) using machine learning (ML) can effectively accelerate the experimental process of perovskite solar cells (PSCs). In this study, a high-quality dataset containing 2079 experimental PSCs is established to predict PCE values using an accurate ML model, achieving an impressive coefficient of determination (R2) value of 0.76. In the 12 validation experiments with PSCs, the average absolute error between the observed and predicted PCE values is only 1.6%. Leveraging the recommended improvement solutions from the ML model, the device's PCE to 25.01% in experimental PSCs is successfully enhanced, thus truly realizing the objective of machine learning-guided experiments. In addition, by improving the PCE of specific devices, the predicted value can reach 28.19%. The ML model has provided feasible strategies for experimentally improving the PCE of PSCs, which play a crucial role in achieving PCE breakthroughs.

Abstract Image

Abstract Image

通过机器学习指导下的实验策略提高 Perovskite 太阳能电池的功率转换效率
利用机器学习(ML)预测功率转换效率(PCE)可有效加快包晶体太阳能电池(PSCs)的实验进程。本研究建立了一个包含 2079 个实验 PSC 的高质量数据集,利用精确的 ML 模型预测 PCE 值,其判定系数 (R2) 值达到了令人印象深刻的 0.76。在 12 个 PSC 验证实验中,观测值和预测 PCE 值之间的平均绝对误差仅为 1.6%。利用 ML 模型推荐的改进方案,该器件在 PSC 实验中的 PCE 成功提高到 25.01%,从而真正实现了机器学习指导实验的目标。此外,通过提高特定器件的 PCE,预测值可达到 28.19%。ML 模型为实验改进 PSC 的 PCE 提供了可行的策略,对实现 PCE 的突破起到了至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信