Programmable Morphology-Adaptive Peptide Nanoassembly for Enhanced Catalytic Therapy

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xue-Hao Zhang, Ben-Li Song, Ning-Bo Yi, Guang-Xu Zhang, Wen-Fu Zheng, Dong-Bing Cheng, Zeng-Ying Qiao, Hao Wang
{"title":"Programmable Morphology-Adaptive Peptide Nanoassembly for Enhanced Catalytic Therapy","authors":"Xue-Hao Zhang, Ben-Li Song, Ning-Bo Yi, Guang-Xu Zhang, Wen-Fu Zheng, Dong-Bing Cheng, Zeng-Ying Qiao, Hao Wang","doi":"10.1002/adma.202417089","DOIUrl":null,"url":null,"abstract":"Nanocatalytic therapy holds significant promise in cancer treatment by exploiting the high oxidative stress within tumor cells. However, efficiently delivering nanocatalytic agents to tumor tissues and maximizing their catalytic activity in situ remain critical challenges. Morphology-adaptive delivery systems, capable of adjusting their physical form in response to physiological conditions, offer unique spatiotemporal control for navigating complex biological environments like the tumor microenvironment. While designing systems that undergo multiple shape transformations often involves complex stimuli-responsive mechanisms, making programmable responses through simple designs highly desirable yet challenging. Here, FeFKC, an innovative adaptive material is introduced that achieves multi-step morphological transformations at the tissue level and amplifies catalytic activity through a straightforward design. As the microenvironmental pH decreases during drug delivery, FeFKC dynamically transitions between single chains, nanoparticles, and nanofibers. This programmable shape-shifting facilitates deep tumor penetration, enhanced cellular uptake, and lysosomal escape, significantly improving its catalytic efficiency in nanocatalytic tumor therapy. In vivo studies demonstrate that FeFKC achieves impressive tumor suppression efficacy of up to 95% without notable biosafety concerns. The findings highlight the potential of adaptive nanomaterials with programmable shape-transforming capabilities to overcome biological barriers and enhance catalytic therapy, opening new avenues for cancer treatment and other complex diseases.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"5 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417089","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocatalytic therapy holds significant promise in cancer treatment by exploiting the high oxidative stress within tumor cells. However, efficiently delivering nanocatalytic agents to tumor tissues and maximizing their catalytic activity in situ remain critical challenges. Morphology-adaptive delivery systems, capable of adjusting their physical form in response to physiological conditions, offer unique spatiotemporal control for navigating complex biological environments like the tumor microenvironment. While designing systems that undergo multiple shape transformations often involves complex stimuli-responsive mechanisms, making programmable responses through simple designs highly desirable yet challenging. Here, FeFKC, an innovative adaptive material is introduced that achieves multi-step morphological transformations at the tissue level and amplifies catalytic activity through a straightforward design. As the microenvironmental pH decreases during drug delivery, FeFKC dynamically transitions between single chains, nanoparticles, and nanofibers. This programmable shape-shifting facilitates deep tumor penetration, enhanced cellular uptake, and lysosomal escape, significantly improving its catalytic efficiency in nanocatalytic tumor therapy. In vivo studies demonstrate that FeFKC achieves impressive tumor suppression efficacy of up to 95% without notable biosafety concerns. The findings highlight the potential of adaptive nanomaterials with programmable shape-transforming capabilities to overcome biological barriers and enhance catalytic therapy, opening new avenues for cancer treatment and other complex diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信