Efficient Cellobiose Hydrolysis over a Sulfonated Carbon Catalyst in a Spatially Separated Microwave Electric- and Magnetic-Field Flow Reactor

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuntaro Tsubaki, Kazuaki Senda, Ayumu Onda, Satoshi Fujii
{"title":"Efficient Cellobiose Hydrolysis over a Sulfonated Carbon Catalyst in a Spatially Separated Microwave Electric- and Magnetic-Field Flow Reactor","authors":"Shuntaro Tsubaki, Kazuaki Senda, Ayumu Onda, Satoshi Fujii","doi":"10.1021/acssuschemeng.4c07690","DOIUrl":null,"url":null,"abstract":"Enhanced polysaccharide hydrolysis is essential for converting polysaccharides into mono- and oligosaccharide sugars for use in food, pharmaceutical, and biobased chemical applications. In this study, we developed an efficient continuous-flow hydrolysis process by applying microwaves and sulfonated carbon catalyst (AC-SO<sub>3</sub>H) using cellobiose as a model sugar substrate. We built a microwave flow reactor equipped with a rectangular waveguide and a solid-state microwave generator capable of applying microwaves to a fixed catalyst bed with spatially separated electric (<i>E</i>-) and magnetic (<i>H</i>-) fields and showed that the microwave flow reaction under the <i>E</i>-field improves the glucose formation rate up to 21.7 mmol/g per hour, which is 35.3 times higher than that achieved in the batch microwave reactor. AC-SO<sub>3</sub>H showed 16–30 times higher activity than Amberlyst 70 because of the higher dielectric loss tangent (tan δ) value of AC-SO<sub>3</sub>H (0.187) than Amberlyst 70 (0.040). <i>H</i>-field heating of AC-SO<sub>3</sub>H also improved the glucose formation rate by 1.2–1.6 times. Notably, the <i>H</i>-field reduced the microwave power to 45% of that of the <i>E</i>-field. Therefore, a microwave <i>H</i>-field flow reactor equipped with an AC-SO<sub>3</sub>H catalyst greatly improves both the glucose production rate and energy efficiency of cellobiose hydrolysis.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"22 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07690","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhanced polysaccharide hydrolysis is essential for converting polysaccharides into mono- and oligosaccharide sugars for use in food, pharmaceutical, and biobased chemical applications. In this study, we developed an efficient continuous-flow hydrolysis process by applying microwaves and sulfonated carbon catalyst (AC-SO3H) using cellobiose as a model sugar substrate. We built a microwave flow reactor equipped with a rectangular waveguide and a solid-state microwave generator capable of applying microwaves to a fixed catalyst bed with spatially separated electric (E-) and magnetic (H-) fields and showed that the microwave flow reaction under the E-field improves the glucose formation rate up to 21.7 mmol/g per hour, which is 35.3 times higher than that achieved in the batch microwave reactor. AC-SO3H showed 16–30 times higher activity than Amberlyst 70 because of the higher dielectric loss tangent (tan δ) value of AC-SO3H (0.187) than Amberlyst 70 (0.040). H-field heating of AC-SO3H also improved the glucose formation rate by 1.2–1.6 times. Notably, the H-field reduced the microwave power to 45% of that of the E-field. Therefore, a microwave H-field flow reactor equipped with an AC-SO3H catalyst greatly improves both the glucose production rate and energy efficiency of cellobiose hydrolysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信