Engineering of HO−Zn−N2 Active Sites in Zeolitic Imidazolate Frameworks for Enhanced (Photo)Electrocatalytic Hydrogen Evolution

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zheao Huang, Zhouzhou Wang, Qiancheng Zhou, Hannah Rabl, Dr. Shaghayegh Naghdi, Dr. Ze Yang, Prof. Dominik Eder
{"title":"Engineering of HO−Zn−N2 Active Sites in Zeolitic Imidazolate Frameworks for Enhanced (Photo)Electrocatalytic Hydrogen Evolution","authors":"Zheao Huang,&nbsp;Zhouzhou Wang,&nbsp;Qiancheng Zhou,&nbsp;Hannah Rabl,&nbsp;Dr. Shaghayegh Naghdi,&nbsp;Dr. Ze Yang,&nbsp;Prof. Dominik Eder","doi":"10.1002/anie.202419913","DOIUrl":null,"url":null,"abstract":"<p>Currently, lack of ways to engineer specific and well-defined active sites in zeolitic imidazolate frameworks (ZIFs) limits our fundamental knowledge with respect to the mechanistic details for (photo)electrocatalytic hydrogen evolution reaction (HER). Here, we introduce the open metal sites into ZIFs through the selective ligand removal (SeLiRe) strategy, comprehensively characterize the altered structural and electronic features, and evaluate their role in HER. In situ electrochemical analysis and X-ray absorption spectroscopy reveal the formation of high-valence HO−Zn−N<sub>2</sub> sites through the binding of Zn−N<sub>2</sub> with electrolyte hydroxide. The optimal OMS-ZIF exhibits a low overpotential of 0.41 V to achieve an ampere-level 1.0 A cm<sup>−2</sup> with 120-hour stability. Theoretical simulations indicate that these active sites accelerate the water molecules activation kinetics, consequently enhancing the efficiency of the Volmer step. This work demonstrates a versatile strategy to introduce highly active catalytic sites in ZIFs, providing new insights into the electrocatalytic mechanism in alkaline media.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 7","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202419913","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202419913","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, lack of ways to engineer specific and well-defined active sites in zeolitic imidazolate frameworks (ZIFs) limits our fundamental knowledge with respect to the mechanistic details for (photo)electrocatalytic hydrogen evolution reaction (HER). Here, we introduce the open metal sites into ZIFs through the selective ligand removal (SeLiRe) strategy, comprehensively characterize the altered structural and electronic features, and evaluate their role in HER. In situ electrochemical analysis and X-ray absorption spectroscopy reveal the formation of high-valence HO−Zn−N2 sites through the binding of Zn−N2 with electrolyte hydroxide. The optimal OMS-ZIF exhibits a low overpotential of 0.41 V to achieve an ampere-level 1.0 A cm−2 with 120-hour stability. Theoretical simulations indicate that these active sites accelerate the water molecules activation kinetics, consequently enhancing the efficiency of the Volmer step. This work demonstrates a versatile strategy to introduce highly active catalytic sites in ZIFs, providing new insights into the electrocatalytic mechanism in alkaline media.

Abstract Image

在沸石咪唑酸盐框架中设计 HO-Zn-N2 活性位点以增强(光)电催化氢气进化
目前,由于缺乏在沸石咪唑框架(ZIFs)中设计特定且定义明确的活性位点的方法,限制了我们对(光)电催化氢进化反应(HER)机理细节的基本了解。在这里,我们通过选择性配体去除(SeLiRe)策略将开放金属位点引入 ZIFs,全面描述了其结构和电子特征的改变,并评估了它们在氢催化反应中的作用。原位电化学分析和 X 射线吸收光谱显示,通过 Zn-N2 与电解质氢氧化物的结合,形成了高价位 HO-Zn-N2 位点。最佳的 OMS-ZIF 具有 0.41 V 的低过电位,可达到 1.0 A cm-2 的安培水平,并具有 120 小时的稳定性。理论模拟表明,这些活性位点加快了水分子的活化动力学,从而提高了沃尔默步骤的效率。这项工作展示了在 ZIF 中引入高活性催化位点的多功能策略,为了解碱性介质中的电催化机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信