Luke F. Bugada, Ponnandy Prabhu, Reid Bailey, Fei Wen
{"title":"Covalent and Orthogonal Cohesin–Dockerin Interactions Enabled by Intermolecular Disulfide Bonds for Hyperthermostable Cellulase Assembly","authors":"Luke F. Bugada, Ponnandy Prabhu, Reid Bailey, Fei Wen","doi":"10.1021/acs.iecr.4c03484","DOIUrl":null,"url":null,"abstract":"Cellulosic biofuel represents a sustainable alternative to fossil fuels, yet high cellulase costs hinder its development. Thermostable cellulosomes, which function at elevated temperatures, increase reaction rates and reduce cooling costs by using cohesin–dockerin interactions to colocalize hyperthermostable cellulases. Due to the noncovalent nature of the cohesin–dockerin interaction, cellulosome stability has been limited to 75 °C. Our study leverages computational design and rapid screening to introduce two different intermolecular disulfide bridges between the same cohesin and dockerin, creating two disulfide cohesin–dockerin pairs. Both disulfide pairs withstood 100 °C and denaturing conditions. Furthermore, the two disulfide bridges retained their orthogonality, expanding the number of orthogonal cohesin–dockerin interactions. Finally, at the cellulase optimal temperature of 80 °C, disulfide assembly improved the activity of a bivalent cellulosome by 26% compared to that of its noncovalent counterpart. These disulfide cohesin–dockerin interactions can be used as building blocks to construct covalent protein complexes that can endure extreme temperatures.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"87 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03484","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulosic biofuel represents a sustainable alternative to fossil fuels, yet high cellulase costs hinder its development. Thermostable cellulosomes, which function at elevated temperatures, increase reaction rates and reduce cooling costs by using cohesin–dockerin interactions to colocalize hyperthermostable cellulases. Due to the noncovalent nature of the cohesin–dockerin interaction, cellulosome stability has been limited to 75 °C. Our study leverages computational design and rapid screening to introduce two different intermolecular disulfide bridges between the same cohesin and dockerin, creating two disulfide cohesin–dockerin pairs. Both disulfide pairs withstood 100 °C and denaturing conditions. Furthermore, the two disulfide bridges retained their orthogonality, expanding the number of orthogonal cohesin–dockerin interactions. Finally, at the cellulase optimal temperature of 80 °C, disulfide assembly improved the activity of a bivalent cellulosome by 26% compared to that of its noncovalent counterpart. These disulfide cohesin–dockerin interactions can be used as building blocks to construct covalent protein complexes that can endure extreme temperatures.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.