{"title":"Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP","authors":"Bilin Zhao, Shuang Zheng, Gaoxiang Yang, Zhijun He, Jiewei Deng, Lijuan Luo, Xinyan Li, Tiangang Luan","doi":"10.1016/j.envint.2024.109215","DOIUrl":null,"url":null,"abstract":"Aryl organophosphorus flame retardants (aryl-OPFRs), commonly used product additives with close ties to daily life, have been regrettably characterized by multiple well-defined toxicity risks. Triphenyl phosphate (TPHP) and tri-o-cresyl phosphate (TOCP), two structurally similar aryl-OPFRs, were observed in our previous study to exhibit contrasting immunotoxic effects on THP-1 macrophages, yet the underlying mechanisms remain unclear. This study sought to address the knowledge gap by integrating transcriptomic and metabolomic analyses to elucidate the intricate mechanisms. During individual omics analyses, we unfortunately only obtained highly similar results for both TPHP and TOCP, failing to identify the key reasons for their differences. These results revealed comparable disturbances induced by both compounds, including disruptions in nucleic acid synthesis and energy metabolism, blocking ADP to ATP conversion by reducing TCA cycle intermediates, consequently leading to ATP depletion. However, through integrative analysis, specific pathways affected by each compound were successfully identified, shedding light on their unique effects. TPHP reduced GTP levels necessary for Rap1 activation, thereby inhibiting phagocytosis and adhesion of THP-1 macrophages. Conversely, TOCP stimulated the mTOR signaling pathway, enhancing phosphorylation of downstream proteins S6K, RHOA, and PKC, consequently promoting immune responses. This study not only clarified the distinct immunotoxic mechanisms of TPHP and TOCP but also provided critical insights into how structural variations in aryl-OPFRs can lead to markedly different immune responses, thereby informing future risk assessments and regulatory strategies for these compounds.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"20 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2024.109215","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aryl organophosphorus flame retardants (aryl-OPFRs), commonly used product additives with close ties to daily life, have been regrettably characterized by multiple well-defined toxicity risks. Triphenyl phosphate (TPHP) and tri-o-cresyl phosphate (TOCP), two structurally similar aryl-OPFRs, were observed in our previous study to exhibit contrasting immunotoxic effects on THP-1 macrophages, yet the underlying mechanisms remain unclear. This study sought to address the knowledge gap by integrating transcriptomic and metabolomic analyses to elucidate the intricate mechanisms. During individual omics analyses, we unfortunately only obtained highly similar results for both TPHP and TOCP, failing to identify the key reasons for their differences. These results revealed comparable disturbances induced by both compounds, including disruptions in nucleic acid synthesis and energy metabolism, blocking ADP to ATP conversion by reducing TCA cycle intermediates, consequently leading to ATP depletion. However, through integrative analysis, specific pathways affected by each compound were successfully identified, shedding light on their unique effects. TPHP reduced GTP levels necessary for Rap1 activation, thereby inhibiting phagocytosis and adhesion of THP-1 macrophages. Conversely, TOCP stimulated the mTOR signaling pathway, enhancing phosphorylation of downstream proteins S6K, RHOA, and PKC, consequently promoting immune responses. This study not only clarified the distinct immunotoxic mechanisms of TPHP and TOCP but also provided critical insights into how structural variations in aryl-OPFRs can lead to markedly different immune responses, thereby informing future risk assessments and regulatory strategies for these compounds.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.