{"title":"Diverse Synthesis of Azoles: Construction of ortho‐Azidotetrazoles/Triazoletetrazoles through N‐N Cleavage of 2H‐Indazoles","authors":"Sudip Laru, Suvam Bhattacharjee, Alakananda Hajra","doi":"10.1002/adsc.202401423","DOIUrl":null,"url":null,"abstract":"Herein, we report a conceptually new, general, and efficient approach for the synthesis of valuable ortho‐azido‐1,5‐disubstituted tetrazole and one‐pot synthesis of ortho‐triazoletetrazole derivatives mainly via PIDA mediated N‐N cleavage of the azole ring of 2H‐indazoles using TMSN3. This current methodology represents an array of unsymmetrical ortho‐azidotetrazole and ortho‐triazoletetrazole derivatives with wide functional group tolerance in good to excellent yields under mild reaction conditions. The practical utility of this reaction was showcased through successful scale‐up synthesis and a variety of subsequent derivatizations of ortho‐azidotetrazole products. Mechanistic investigations indicate that the reaction proceeds through a radical pathway.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"47 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401423","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we report a conceptually new, general, and efficient approach for the synthesis of valuable ortho‐azido‐1,5‐disubstituted tetrazole and one‐pot synthesis of ortho‐triazoletetrazole derivatives mainly via PIDA mediated N‐N cleavage of the azole ring of 2H‐indazoles using TMSN3. This current methodology represents an array of unsymmetrical ortho‐azidotetrazole and ortho‐triazoletetrazole derivatives with wide functional group tolerance in good to excellent yields under mild reaction conditions. The practical utility of this reaction was showcased through successful scale‐up synthesis and a variety of subsequent derivatizations of ortho‐azidotetrazole products. Mechanistic investigations indicate that the reaction proceeds through a radical pathway.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.