{"title":"Synthesis of chiral 2‐trifluoromethyl‐4‐(tetrahydroquinolinyl)‐4H‐chromenes via Pd‐catalyzed asymmetric amination","authors":"Bang Zhong Wang, Luyang Sun, Pengyue Zhang, Shuaibo Zhang, Jinfeng Zhao, Jingping Qu, Yuhan Zhou","doi":"10.1002/adsc.202401422","DOIUrl":null,"url":null,"abstract":"A new strategy for the construction of chiral 4H‐chromene skeleton via Pd‐catalyzed asymmetric amination of 2H‐chromene was reported. A series of chiral 2‐trifluoromethyl‐4H‐chromenes containing 1,2,3,4‐tetrahydroquinoline unit were synthesized in moderate to good yields with excellent enantioselectivity, the method serves as an effective supplement to the construction of chiral 4H‐chromene skeleton.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"144 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401422","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A new strategy for the construction of chiral 4H‐chromene skeleton via Pd‐catalyzed asymmetric amination of 2H‐chromene was reported. A series of chiral 2‐trifluoromethyl‐4H‐chromenes containing 1,2,3,4‐tetrahydroquinoline unit were synthesized in moderate to good yields with excellent enantioselectivity, the method serves as an effective supplement to the construction of chiral 4H‐chromene skeleton.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.