Halle M. Barber, Adrian A. Pater, Keith T. Gagnon, Masad J. Damha, Daniel O’Reilly
{"title":"Chemical engineering of CRISPR–Cas systems for therapeutic application","authors":"Halle M. Barber, Adrian A. Pater, Keith T. Gagnon, Masad J. Damha, Daniel O’Reilly","doi":"10.1038/s41573-024-01086-0","DOIUrl":null,"url":null,"abstract":"Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed. CRISPR technology is revolutionizing the development of therapies for genetic disorders. However, the application of CRISPR-based therapeutics is challenged by factors impacting stability, efficiency, delivery and safety. This Review focuses on chemical engineering of CRISPR–Cas systems to address these issues, it assesses next-generation CRISPR–Cas systems, and it highlights CRISPR-based therapies that are approved or in clinical development.","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"24 3","pages":"209-230"},"PeriodicalIF":122.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews. Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41573-024-01086-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed. CRISPR technology is revolutionizing the development of therapies for genetic disorders. However, the application of CRISPR-based therapeutics is challenged by factors impacting stability, efficiency, delivery and safety. This Review focuses on chemical engineering of CRISPR–Cas systems to address these issues, it assesses next-generation CRISPR–Cas systems, and it highlights CRISPR-based therapies that are approved or in clinical development.
期刊介绍:
Nature Reviews Drug Discovery is a monthly journal aimed at everyone working in the drug discovery and development arena.
Each issue includes:
Highest-quality reviews and perspectives covering a broad scope.
News stories investigating the hottest topics in drug discovery.
Timely summaries of key primary research papers.
Concise updates on the latest advances in areas such as new drug approvals, patent law, and emerging industry trends and strategies.