{"title":"Ultrafast UV Curing Enabling A Stable Interphase and Interface for Solid-State Sodium–Metal Batteries","authors":"Fupeng Li, Kun Ren, Minjie Hou, Mingcan Lin, Xiecheng Yang, Yingjie Zhou, Shizhao Xiong, Feng Liang","doi":"10.1021/acsenergylett.4c03043","DOIUrl":null,"url":null,"abstract":"Designing advanced solid-state sodium batteries (SSBs) demands simultaneously overcoming the low ionic conductivity of solid-state electrolytes (SSEs) and the poor interfacial compatibility between electrodes and SSEs. Herein, a composite solid-state electrolyte (CSE) with high ionic conductivity was prepared by using an efficient UV polymerization in 45 s. A stable interphase and interface were achieved simultaneously through solvent structure tuning and <i>in situ</i> curing. By introduction of fluoroethylene carbonate (FEC) to form a competitive solvation structure in CSE-F, the low lowest unoccupied molecular orbital (LUMO) allowed preferential reduction of FEC in the solvation shell. A dense and uniform NaF-rich interphase was constructed to inhibit the growth of the dendrites. Simultaneously, the integrated cathode and electrolyte constructed a tight-contact interface, enabling uniform and efficient ion transport. The Na||CSE-F@Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) cell showed a capacity retention of 91.78% after 2100 cycles. This work provides a solution to simultaneously achieve a rational interphase and an electrode/electrolyte interface design for SSBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"85 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing advanced solid-state sodium batteries (SSBs) demands simultaneously overcoming the low ionic conductivity of solid-state electrolytes (SSEs) and the poor interfacial compatibility between electrodes and SSEs. Herein, a composite solid-state electrolyte (CSE) with high ionic conductivity was prepared by using an efficient UV polymerization in 45 s. A stable interphase and interface were achieved simultaneously through solvent structure tuning and in situ curing. By introduction of fluoroethylene carbonate (FEC) to form a competitive solvation structure in CSE-F, the low lowest unoccupied molecular orbital (LUMO) allowed preferential reduction of FEC in the solvation shell. A dense and uniform NaF-rich interphase was constructed to inhibit the growth of the dendrites. Simultaneously, the integrated cathode and electrolyte constructed a tight-contact interface, enabling uniform and efficient ion transport. The Na||CSE-F@Na3V2(PO4)3 (NVP) cell showed a capacity retention of 91.78% after 2100 cycles. This work provides a solution to simultaneously achieve a rational interphase and an electrode/electrolyte interface design for SSBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.