{"title":"Regulating Solvation Shell to Fortify Anion–Cation Coordination for Enhanced Sodium Metal Battery Stability","authors":"Zhangbin Cheng, Zehui Zhang, Feilong Qiu, Zheng Gao, Haijiao Xie, Zhen Xu, Min Jia, Xiaoyu Zhang, Haoshen Zhou","doi":"10.1021/acsenergylett.4c02751","DOIUrl":null,"url":null,"abstract":"The use of sodium metal as an anode presents a promising avenue for high energy density sodium rechargeable batteries given its high specific capacity and low redox potential. However, sodium metal batteries (SMBs) encounter significant challenges, including interfacial parasitic reactions and dendrite growth. Developing a robust solid electrolyte interphase (SEI) is crucial for SMB engineering. This study introduces hydrofluoroether as a diluent in high-concentration electrolytes, effectively modifying the solvation structure to enhance ion-pair coordination, which leads to an inorganic-rich SEI, mitigating sodium depletion and dendrite formation. Consequently, localized high concentration electrolytes achieve a 98.3% Coulombic efficiency in Na||Cu batteries, while the Na||NaFe<sub>1/3</sub>Ni<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> battery retains 86.4% capacity after 750 cycles at 1C. Additionally, the Na||Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> battery achieves an exceptional average Coulombic efficiency of 99.97% at 1C, with a capacity retention of 95.4% after 517 days. This study provides a framework for enhancing efficiency and longevity in SMBs that can be applied to other battery systems.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"11 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02751","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of sodium metal as an anode presents a promising avenue for high energy density sodium rechargeable batteries given its high specific capacity and low redox potential. However, sodium metal batteries (SMBs) encounter significant challenges, including interfacial parasitic reactions and dendrite growth. Developing a robust solid electrolyte interphase (SEI) is crucial for SMB engineering. This study introduces hydrofluoroether as a diluent in high-concentration electrolytes, effectively modifying the solvation structure to enhance ion-pair coordination, which leads to an inorganic-rich SEI, mitigating sodium depletion and dendrite formation. Consequently, localized high concentration electrolytes achieve a 98.3% Coulombic efficiency in Na||Cu batteries, while the Na||NaFe1/3Ni1/3Mn1/3O2 battery retains 86.4% capacity after 750 cycles at 1C. Additionally, the Na||Na3V2(PO4)3 battery achieves an exceptional average Coulombic efficiency of 99.97% at 1C, with a capacity retention of 95.4% after 517 days. This study provides a framework for enhancing efficiency and longevity in SMBs that can be applied to other battery systems.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.