Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-02-05 DOI:10.1016/j.matt.2024.11.021
Yan Bai , Longlu Wang , Xiang Zou , Ning Ding , Yuhui Feng , Zhen You , Weiwei Zhao , Weikang Wang , Feifei Lin , Yuzhe Chen , Yijie Zhang , Jianmin Li , Fangyi Guan , Shujuan Liu , Wei Huang , Qiang Zhao
{"title":"Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome","authors":"Yan Bai ,&nbsp;Longlu Wang ,&nbsp;Xiang Zou ,&nbsp;Ning Ding ,&nbsp;Yuhui Feng ,&nbsp;Zhen You ,&nbsp;Weiwei Zhao ,&nbsp;Weikang Wang ,&nbsp;Feifei Lin ,&nbsp;Yuzhe Chen ,&nbsp;Yijie Zhang ,&nbsp;Jianmin Li ,&nbsp;Fangyi Guan ,&nbsp;Shujuan Liu ,&nbsp;Wei Huang ,&nbsp;Qiang Zhao","doi":"10.1016/j.matt.2024.11.021","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti<sub>3</sub>C<sub>2</sub> is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti<sub>3</sub>C<sub>2</sub>/Na<sub>2</sub>S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti<sub>3</sub>C<sub>2</sub> nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S<sup>2−</sup> ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti<sub>3</sub>C<sub>2</sub> sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 2","pages":"Article 101927"},"PeriodicalIF":17.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524005964","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti3C2 is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti3C2/Na2S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti3C2 nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S2− ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti3C2 sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.

Abstract Image

Abstract Image

原子硫键合碳化钛纳米片用于监测睡眠呼吸暂停综合征的柔性压阻传感器
柔性压阻传感器通过呼吸气流对睡眠呼吸暂停综合征(SAS)进行实时监测,引起了人们的广泛关注。虽然二维超薄Ti3C2被认为是一种很有前途的压阻材料,但其较差的结构压缩性和抗氧化性限制了其实际应用。本文提出了一种创新的原子硫键策略,用于制备柔性压阻传感器的大尺寸、皱褶和抗氧化Ti3C2/Na2S (TS)薄片。其基本机制是基于Ti3C2纳米片的横向边界组装成大薄片(~ 7 μm),晶格畸变诱导皱褶结构,以及S2−离子的边缘钝化以减轻氧化(105天)的协同效应。褶皱的微结构提供了丰富的空间,增强了可压缩性和接触部位的可变性,从而使灵敏度比Ti3C2传感器提高了5倍,并具有0.2 Pa的超低检测极限。我们演示了高灵敏度和稳定的压阻式传感器集成到呼吸监测系统中用于SAS检测的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
文献相关原料
公司名称
产品信息
阿拉丁
Dimethyl sulfoxide (DMSO)
阿拉丁
Sodium hydrosulfide (NaHS)
阿拉丁
Lithium fluoride (LiF)
阿拉丁
Dimethyl sulfoxide
阿拉丁
Sodium hydrosulfide
阿拉丁
Lithium fluoride
阿拉丁
Dimethyl sulfoxide (DMSO)
阿拉丁
Sodium hydrosulfide (NaHS)
阿拉丁
Lithium fluoride (LiF)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信