Paula Ferreira;Nádia Pereira;Hugo Rosa;Sofia Oliveira;Luísa Coheur;Sofia Francisco;Sidclay Souza;Ricardo Ribeiro;João P. Carvalho;Paula Paulino;Isabel Trancoso;Ana Margarida Veiga-Simão
{"title":"Towards Cyberbullying Detection: Building, Benchmarking and Longitudinal Analysis of Aggressiveness and Conflicts/Attacks Datasets From Twitter","authors":"Paula Ferreira;Nádia Pereira;Hugo Rosa;Sofia Oliveira;Luísa Coheur;Sofia Francisco;Sidclay Souza;Ricardo Ribeiro;João P. Carvalho;Paula Paulino;Isabel Trancoso;Ana Margarida Veiga-Simão","doi":"10.1109/TAFFC.2024.3518587","DOIUrl":null,"url":null,"abstract":"Offense and hate speech are a source of online conflicts which have become common in social media and, as such, their study is a growing topic of research in machine learning and natural language processing. This article presents two Portuguese language offense-related datasets that deepen the study of the subject: an Aggressiveness dataset and a Conflicts/Attacks dataset. While the former is similar to other offense detection related datasets, the latter constitutes a novelty due to the use of the history of the interaction between users. Several studies were carried out to construct and analyze the data in the datasets. The first study included gathering expressions of verbal aggression witnessed by adolescents to guide data extraction for the datasets. The second study included extracting data from Twitter (in Portuguese) that matched the most frequent expressions/words/sentences that were identified in the previous study. The third study consisted in the development of the Aggressiveness dataset, the Conflicts/Attacks dataset, and classification models. In our fourth study, we proposed to examine whether online aggression and conflicts/attacks revealed any trend changes over time with a sample of 86 adolescents. With this study, we also proposed to investigate whether the amount of tweets sent over a period of 273 days was related to online aggression and conflicts/attacks. Finally, we analyzed the percentage of participants who participated in the aggressions and/or attacks/conflicts.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"16 3","pages":"1473-1487"},"PeriodicalIF":9.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10804011/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Offense and hate speech are a source of online conflicts which have become common in social media and, as such, their study is a growing topic of research in machine learning and natural language processing. This article presents two Portuguese language offense-related datasets that deepen the study of the subject: an Aggressiveness dataset and a Conflicts/Attacks dataset. While the former is similar to other offense detection related datasets, the latter constitutes a novelty due to the use of the history of the interaction between users. Several studies were carried out to construct and analyze the data in the datasets. The first study included gathering expressions of verbal aggression witnessed by adolescents to guide data extraction for the datasets. The second study included extracting data from Twitter (in Portuguese) that matched the most frequent expressions/words/sentences that were identified in the previous study. The third study consisted in the development of the Aggressiveness dataset, the Conflicts/Attacks dataset, and classification models. In our fourth study, we proposed to examine whether online aggression and conflicts/attacks revealed any trend changes over time with a sample of 86 adolescents. With this study, we also proposed to investigate whether the amount of tweets sent over a period of 273 days was related to online aggression and conflicts/attacks. Finally, we analyzed the percentage of participants who participated in the aggressions and/or attacks/conflicts.
期刊介绍:
The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.