Electrospinning Si-Ti alloy nanoparticles into 3D spindle mesh Structure: An integrated self-supporting anode with in-built high conductive framework

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zian Huang, Zhiwen Qiu, Xufeng Dong, Jiliang Zhang, Liuyang Zhao, Hongfu Tang, Aimin Wu
{"title":"Electrospinning Si-Ti alloy nanoparticles into 3D spindle mesh Structure: An integrated self-supporting anode with in-built high conductive framework","authors":"Zian Huang, Zhiwen Qiu, Xufeng Dong, Jiliang Zhang, Liuyang Zhao, Hongfu Tang, Aimin Wu","doi":"10.1016/j.apsusc.2024.162114","DOIUrl":null,"url":null,"abstract":"Low conductivity and volumetric expansion are the core factors hindering the practical application of high-capacity silicon anodes. 3D spindle mesh structure has been electrospun with the Si-Ti alloy nanoparticles fabricated by DC arc plasma evaporation. When served as a flexible, self-supporting anode of Lithium-ion batteries, high discharge capacity has been achieved with outstanding rate performance. Additionally, the electrode retains a capacity of 462.2 mAh/g after 500 cycles at a current density of 1 A·g<sup>−1</sup>, exhibiting superior cycling stability with a coulombic efficiency maintained above 99 %. The integrated self-supporting electrode minimized the impact of binders, conductive agents, and current collectors, significantly reducing side reactions at the electrode–electrolyte interface. This innovative structure showcases excellent electrochemical performance as a promising candidate for Lithium-ion battery anodes.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"11 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.162114","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low conductivity and volumetric expansion are the core factors hindering the practical application of high-capacity silicon anodes. 3D spindle mesh structure has been electrospun with the Si-Ti alloy nanoparticles fabricated by DC arc plasma evaporation. When served as a flexible, self-supporting anode of Lithium-ion batteries, high discharge capacity has been achieved with outstanding rate performance. Additionally, the electrode retains a capacity of 462.2 mAh/g after 500 cycles at a current density of 1 A·g−1, exhibiting superior cycling stability with a coulombic efficiency maintained above 99 %. The integrated self-supporting electrode minimized the impact of binders, conductive agents, and current collectors, significantly reducing side reactions at the electrode–electrolyte interface. This innovative structure showcases excellent electrochemical performance as a promising candidate for Lithium-ion battery anodes.

Abstract Image

将硅钛合金纳米粒子电纺成三维纺锤网状结构:内置高导电框架的集成自支撑阳极
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信