Genetic Analysis of Psychosis Biotypes: Shared Ancestry-Adjusted Polygenic Risk and Unique Genomic Associations.

Cuihua Xia, Ney Alliey-Rodriguez, Carol A Tamminga, Matcheri S Keshavan, Godfrey D Pearlson, Sarah K Keedy, Brett Clementz, Jennifer E McDowell, David Parker, Rebekka Lencer, S Kristian Hill, Jeffrey R Bishop, Elena I Ivleva, Cindy Wen, Rujia Dai, Chao Chen, Chunyu Liu, Elliot S Gershon
{"title":"Genetic Analysis of Psychosis Biotypes: Shared Ancestry-Adjusted Polygenic Risk and Unique Genomic Associations.","authors":"Cuihua Xia, Ney Alliey-Rodriguez, Carol A Tamminga, Matcheri S Keshavan, Godfrey D Pearlson, Sarah K Keedy, Brett Clementz, Jennifer E McDowell, David Parker, Rebekka Lencer, S Kristian Hill, Jeffrey R Bishop, Elena I Ivleva, Cindy Wen, Rujia Dai, Chao Chen, Chunyu Liu, Elliot S Gershon","doi":"10.1101/2024.12.05.24318404","DOIUrl":null,"url":null,"abstract":"<p><p>The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with psychosis. Two recently developed <i>post hoc</i> ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes and isoforms showed significant genomic associations with specific Biotypes in Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in adult brain and fetal brain. TWAS inflation was addressed by inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes <i>TMEM140</i> , <i>ARTN</i> , <i>C1orf115</i> , <i>CYREN</i> , and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.05.24318404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes and isoforms showed significant genomic associations with specific Biotypes in Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in adult brain and fetal brain. TWAS inflation was addressed by inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140 , ARTN , C1orf115 , CYREN , and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.

精神病生物类型的遗传分析:共同的祖先调整多基因风险和独特的基因组关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信