Fei Zhang , Ling-Dong Xu , Shiying Wu , Bin Wang , Pinglong Xu , Yao-Wei Huang
{"title":"Deciphering the hepatitis E virus ORF1: Functional domains, protein processing, and patient-derived mutations","authors":"Fei Zhang , Ling-Dong Xu , Shiying Wu , Bin Wang , Pinglong Xu , Yao-Wei Huang","doi":"10.1016/j.virol.2024.110350","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatitis E virus (HEV) is a major cause of acute and chronic hepatitis in humans. The HEV open reading frames (ORF1) encodes a large non-structural protein essential for viral replication, which contains several functional domains, including helicase and RNA-dependent RNA polymerase. A confusing aspect is that, while RNA viruses typically encode large polyproteins that rely on their enzymatic activity for processing into functional units, the processing of the ORF1 protein and the mechanisms involved remain unclear. The ORF1 plays a pivotal role in the viral life cycle, thus mutations in this region, especially those occurring under environmental pressures such as during antiviral drug treatment, could significantly affect viral replication and survival. Here, we summarize the recent advances in the functional domains, processing, and mutations of ORF1. Gaining a deeper understanding of HEV biology, particularly focusing on ORF1, could facilitate the development of new strategies to control HEV infections.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"603 ","pages":"Article 110350"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004268222400374X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis E virus (HEV) is a major cause of acute and chronic hepatitis in humans. The HEV open reading frames (ORF1) encodes a large non-structural protein essential for viral replication, which contains several functional domains, including helicase and RNA-dependent RNA polymerase. A confusing aspect is that, while RNA viruses typically encode large polyproteins that rely on their enzymatic activity for processing into functional units, the processing of the ORF1 protein and the mechanisms involved remain unclear. The ORF1 plays a pivotal role in the viral life cycle, thus mutations in this region, especially those occurring under environmental pressures such as during antiviral drug treatment, could significantly affect viral replication and survival. Here, we summarize the recent advances in the functional domains, processing, and mutations of ORF1. Gaining a deeper understanding of HEV biology, particularly focusing on ORF1, could facilitate the development of new strategies to control HEV infections.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.