Effects of ionic strength, cation type and pH on the cotransport of microplastics with PFOA in saturated porous media.

Xu Zhang, Lixingzi Wu, Xinle Han, Yuzhi Shi, Jiwen Huang, Botao Ding, Yanhao Zhang, Zhibin Zhang, Yanfeng Shi, Fulin Li
{"title":"Effects of ionic strength, cation type and pH on the cotransport of microplastics with PFOA in saturated porous media.","authors":"Xu Zhang, Lixingzi Wu, Xinle Han, Yuzhi Shi, Jiwen Huang, Botao Ding, Yanhao Zhang, Zhibin Zhang, Yanfeng Shi, Fulin Li","doi":"10.1016/j.chemosphere.2024.143942","DOIUrl":null,"url":null,"abstract":"<p><p>Both perfluorooctanoic acid (PFOA) and polystyrene microplastics (PS-MPs) are emerging contaminants commonly found in aqueous environments. In co-contaminated areas, MPs may act as carriers for PFOA, complicating transport dynamics. However, information on their cotransport in porous media is limited. This study investigates the transport behaviors of PFOA and PS-MPs in saturated quartz sand columns under varying ionic strength (IS), cation type, and pH. Using the DLVO interaction energy theory and a mathematical model, we analyzed their cotransport. The results demonstrated that PS-MPs inhibited PFOA transport due to hydrophobic adsorption, reducing PFOA mobility. However, at pH 5, PS-MPs facilitated PFOA transport through competitive adsorption on sand surfaces. Conversely, PFOA significantly accelerated PS-MPs transport, likely due to electrostatic repulsion and reduced PS-MPs size. The promoting effect of PFOA on PS-MPs was similar in NaCl and CaCl<sub>2</sub> solutions. It is noteworthy that under acidic conditions, the increased electrostatic attraction between PS-MPs and quartz sand leads to substantial adsorption of PS-MPs onto the quartz sand surface. Under these conditions, PFOA exerts almost no promoting effect on PS-MPs. This study showed that the coexistence of PS-MPs and PFOA would influence the mobility of each other in the saturated porous media. Overall, the findings from this work could greatly improve our understanding of cotransport behaviors and environmental risk of PS-MPs and PFOA.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143942"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Both perfluorooctanoic acid (PFOA) and polystyrene microplastics (PS-MPs) are emerging contaminants commonly found in aqueous environments. In co-contaminated areas, MPs may act as carriers for PFOA, complicating transport dynamics. However, information on their cotransport in porous media is limited. This study investigates the transport behaviors of PFOA and PS-MPs in saturated quartz sand columns under varying ionic strength (IS), cation type, and pH. Using the DLVO interaction energy theory and a mathematical model, we analyzed their cotransport. The results demonstrated that PS-MPs inhibited PFOA transport due to hydrophobic adsorption, reducing PFOA mobility. However, at pH 5, PS-MPs facilitated PFOA transport through competitive adsorption on sand surfaces. Conversely, PFOA significantly accelerated PS-MPs transport, likely due to electrostatic repulsion and reduced PS-MPs size. The promoting effect of PFOA on PS-MPs was similar in NaCl and CaCl2 solutions. It is noteworthy that under acidic conditions, the increased electrostatic attraction between PS-MPs and quartz sand leads to substantial adsorption of PS-MPs onto the quartz sand surface. Under these conditions, PFOA exerts almost no promoting effect on PS-MPs. This study showed that the coexistence of PS-MPs and PFOA would influence the mobility of each other in the saturated porous media. Overall, the findings from this work could greatly improve our understanding of cotransport behaviors and environmental risk of PS-MPs and PFOA.

离子强度、阳离子类型和 pH 值对饱和多孔介质中微塑料与全氟辛烷磺酸共迁移的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信