Plasma proteomics for novel biomarker discovery in childhood tuberculosis.

Andrea Fossati, Peter Wambi, Devan Jaganath, Roger Calderon, Robert Castro, Alexander Mohapatra, Justin McKetney, Juaneta Luiz, Rutuja Nerurkar, Esin Nkereuwem, Molly F Franke, Zaynab Mousavian, Jeffrey M Collins, George B Sigal, Mark R Segal, Beate Kampman, Eric Wobudeya, Adithya Cattamanchi, Joel D Ernst, Heather J Zar, Danielle L Swaney
{"title":"Plasma proteomics for novel biomarker discovery in childhood tuberculosis.","authors":"Andrea Fossati, Peter Wambi, Devan Jaganath, Roger Calderon, Robert Castro, Alexander Mohapatra, Justin McKetney, Juaneta Luiz, Rutuja Nerurkar, Esin Nkereuwem, Molly F Franke, Zaynab Mousavian, Jeffrey M Collins, George B Sigal, Mark R Segal, Beate Kampman, Eric Wobudeya, Adithya Cattamanchi, Joel D Ernst, Heather J Zar, Danielle L Swaney","doi":"10.1101/2024.12.05.24318340","DOIUrl":null,"url":null,"abstract":"<p><p>Failure to rapidly diagnose tuberculosis disease (TB) and initiate treatment is a driving factor of TB as a leading cause of death in children. Current TB diagnostic assays have poor performance in children, and identifying novel non-sputum-based TB biomarkers to improve pediatric TB diagnosis is a global priority. We sought to develop a plasma biosignature for TB by probing the plasma proteome of 511 children stratified by TB diagnostic classification and HIV status from sites in four low- and middle-income countries, using high-throughput data-independent acquisition mass-spectrometry (DIA-PASEF-MS). We identified 47 proteins differentially regulated (BH adjusted p-values < 1%) between children with microbiologically confirmed TB and children with non-TB respiratory diseases (Unlikely TB). We further employed machine learning to derive three parsimonious biosignatures encompassing 4, 5, or 6 proteins that achieved AUCs of 0.86-0.88 all of which exceeded the minimum WHO target product profile accuracy thresholds for a TB screening test (70% specificity at 90% sensitivity, PPV 0.65-0.74, NPV 0.92-0.95). This work provides insights into the unique host response in pediatric TB disease, as well as a non-sputum biosignature that could reduce delays in TB diagnosis and improve detection and management of TB in children worldwide.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.05.24318340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Failure to rapidly diagnose tuberculosis disease (TB) and initiate treatment is a driving factor of TB as a leading cause of death in children. Current TB diagnostic assays have poor performance in children, and identifying novel non-sputum-based TB biomarkers to improve pediatric TB diagnosis is a global priority. We sought to develop a plasma biosignature for TB by probing the plasma proteome of 511 children stratified by TB diagnostic classification and HIV status from sites in four low- and middle-income countries, using high-throughput data-independent acquisition mass-spectrometry (DIA-PASEF-MS). We identified 47 proteins differentially regulated (BH adjusted p-values < 1%) between children with microbiologically confirmed TB and children with non-TB respiratory diseases (Unlikely TB). We further employed machine learning to derive three parsimonious biosignatures encompassing 4, 5, or 6 proteins that achieved AUCs of 0.86-0.88 all of which exceeded the minimum WHO target product profile accuracy thresholds for a TB screening test (70% specificity at 90% sensitivity, PPV 0.65-0.74, NPV 0.92-0.95). This work provides insights into the unique host response in pediatric TB disease, as well as a non-sputum biosignature that could reduce delays in TB diagnosis and improve detection and management of TB in children worldwide.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信