Claire E Knezevic, James M Stevenson, Jonathan Merran, Isabel Snyder, Grant Restorick, Christopher Waters, Mark A Marzinke
{"title":"Implementation of Integrated Clinical Pharmacogenomics Testing at an Academic Medical Center.","authors":"Claire E Knezevic, James M Stevenson, Jonathan Merran, Isabel Snyder, Grant Restorick, Christopher Waters, Mark A Marzinke","doi":"10.1093/jalm/jfae128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pharmacogenomics has demonstrated benefits for clinical care, including a reduction in adverse events and cost savings. However, barriers in expanded implementation of pharmacogenomics testing include prolonged turnaround times and integration of results into the electronic health record with clinical decision support. A clinical workflow was developed and implemented to facilitate in-house result generation and incorporation into the electronic health record at a large academic medical center.</p><p><strong>Methods: </strong>An 11-gene actionable pharmacogenomics panel was developed and validated using a QuantStudio 12K Flex platform. Allelic results were exported to a custom driver and rules engine, and result messages, which included a diplotype and predicted metabolic phenotype, were sent to the electronic health record; an electronic consultation (eConsult) service was integrated into the workflow. Postimplementation monitoring was performed to evaluate the frequency of actionable results and turnaround times.</p><p><strong>Results: </strong>The actionable pharmacogenomics panel covered 39 alleles across 11 genes. Metabolic phenotypes were resulted alongside gene diplotypes, and clinician-facing phenotype summaries (Genomic Indicators) were presented in the electronic health record. Postimplementation, 8 clinical areas have utilized pharmacogenomics testing, with 56% of orders occurring in the outpatient setting; 22.1% of requests included at least one actionable pharmacogene, and 67% of orders were associated with a pre- or postresult electronic consultation. Mean turnaround time from sample collection to result was 4.6 days.</p><p><strong>Conclusions: </strong>A pharmacogenomics pipeline was successfully operationalized at a quaternary academic medical center, with direct integration of results into the electronic health record, clinical decision support, and eConsult services.</p>","PeriodicalId":46361,"journal":{"name":"Journal of Applied Laboratory Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Laboratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jalm/jfae128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pharmacogenomics has demonstrated benefits for clinical care, including a reduction in adverse events and cost savings. However, barriers in expanded implementation of pharmacogenomics testing include prolonged turnaround times and integration of results into the electronic health record with clinical decision support. A clinical workflow was developed and implemented to facilitate in-house result generation and incorporation into the electronic health record at a large academic medical center.
Methods: An 11-gene actionable pharmacogenomics panel was developed and validated using a QuantStudio 12K Flex platform. Allelic results were exported to a custom driver and rules engine, and result messages, which included a diplotype and predicted metabolic phenotype, were sent to the electronic health record; an electronic consultation (eConsult) service was integrated into the workflow. Postimplementation monitoring was performed to evaluate the frequency of actionable results and turnaround times.
Results: The actionable pharmacogenomics panel covered 39 alleles across 11 genes. Metabolic phenotypes were resulted alongside gene diplotypes, and clinician-facing phenotype summaries (Genomic Indicators) were presented in the electronic health record. Postimplementation, 8 clinical areas have utilized pharmacogenomics testing, with 56% of orders occurring in the outpatient setting; 22.1% of requests included at least one actionable pharmacogene, and 67% of orders were associated with a pre- or postresult electronic consultation. Mean turnaround time from sample collection to result was 4.6 days.
Conclusions: A pharmacogenomics pipeline was successfully operationalized at a quaternary academic medical center, with direct integration of results into the electronic health record, clinical decision support, and eConsult services.