Influence of the Gut Microbiota, Metabolism and Environment on Neuropsychiatric Disorders.

IF 1.3 Q4 PHARMACOLOGY & PHARMACY
Mengxia Wang, Yan Ma, Bao Zeng, Wenhao Yang, Cuihong Huang, Benqin Tang
{"title":"Influence of the Gut Microbiota, Metabolism and Environment on Neuropsychiatric Disorders.","authors":"Mengxia Wang, Yan Ma, Bao Zeng, Wenhao Yang, Cuihong Huang, Benqin Tang","doi":"10.2174/0127724328335219241202142003","DOIUrl":null,"url":null,"abstract":"<p><p>The two-way communication between intestinal microbiota and the central nervous system (the microbiota-gut-brain axis) is involved in the regulation of brain function, neurodevelopment, and aging. The microbiota-gut-brain axis dysfunction may be a predisposition factor for Parkinson's disease (PD), Alzheimer's disease (AD), Autism spectrum disorder (ASD), and other neurological diseases. However, it is not clear whether gut microbiota dysfunction contributes to neuropsychiatric disorders. Changes in the gut microbiota may modulate or modify the effects of environmental factors on neuropsychiatric disorders. Factors that impact neuropsychiatric disorders also influence the gut microbiota, including diet patterns, exercise, stress and functional gastrointestinal disorders. These factors change microbiome composition and function, along with the metabolism and immune responses that cause neuropsychiatric disorders. In this review, we summarized epidemiological and laboratory evidence for the influence of the gut microbiota, metabolism and environmental factors on neuropsychiatric disorders incidence and outcomes. Furthermore, the role of gut microbiota in the two-way interaction between the gut and the brain was also reviewed, including the vagus nerve, microbial metabolism, and immuno-inflammatory responses. We also considered the therapeutic strategies that target gut microbiota in the treatment of neuropsychiatric disorders, including prebiotics, probiotics, Fecal microbiota transplant (FMT), and antibiotics. Based on these data, possible strategies for microbiota-targeted intervention could improve people's lives and prevent neuropsychiatric disorders in the future.</p>","PeriodicalId":29871,"journal":{"name":"Current Reviews in Clinical and Experimental Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Reviews in Clinical and Experimental Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0127724328335219241202142003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The two-way communication between intestinal microbiota and the central nervous system (the microbiota-gut-brain axis) is involved in the regulation of brain function, neurodevelopment, and aging. The microbiota-gut-brain axis dysfunction may be a predisposition factor for Parkinson's disease (PD), Alzheimer's disease (AD), Autism spectrum disorder (ASD), and other neurological diseases. However, it is not clear whether gut microbiota dysfunction contributes to neuropsychiatric disorders. Changes in the gut microbiota may modulate or modify the effects of environmental factors on neuropsychiatric disorders. Factors that impact neuropsychiatric disorders also influence the gut microbiota, including diet patterns, exercise, stress and functional gastrointestinal disorders. These factors change microbiome composition and function, along with the metabolism and immune responses that cause neuropsychiatric disorders. In this review, we summarized epidemiological and laboratory evidence for the influence of the gut microbiota, metabolism and environmental factors on neuropsychiatric disorders incidence and outcomes. Furthermore, the role of gut microbiota in the two-way interaction between the gut and the brain was also reviewed, including the vagus nerve, microbial metabolism, and immuno-inflammatory responses. We also considered the therapeutic strategies that target gut microbiota in the treatment of neuropsychiatric disorders, including prebiotics, probiotics, Fecal microbiota transplant (FMT), and antibiotics. Based on these data, possible strategies for microbiota-targeted intervention could improve people's lives and prevent neuropsychiatric disorders in the future.

肠道菌群、代谢和环境对神经精神疾病的影响。
肠道微生物群与中枢神经系统(微生物群-肠-脑轴)之间的双向交流参与脑功能、神经发育和衰老的调节。微生物-肠-脑轴功能障碍可能是帕金森病(PD)、阿尔茨海默病(AD)、自闭症谱系障碍(ASD)和其他神经系统疾病的易感因素。然而,目前尚不清楚肠道微生物群功能障碍是否会导致神经精神疾病。肠道菌群的变化可能调节或改变环境因素对神经精神疾病的影响。影响神经精神疾病的因素也会影响肠道微生物群,包括饮食模式、运动、压力和功能性胃肠道疾病。这些因素改变了微生物组的组成和功能,以及导致神经精神疾病的代谢和免疫反应。在这篇综述中,我们总结了肠道微生物群、代谢和环境因素对神经精神疾病发病率和预后影响的流行病学和实验室证据。此外,还综述了肠道微生物群在肠道和大脑双向相互作用中的作用,包括迷走神经、微生物代谢和免疫炎症反应。我们还考虑了针对肠道微生物群治疗神经精神疾病的治疗策略,包括益生元、益生菌、粪便微生物群移植(FMT)和抗生素。基于这些数据,针对微生物群的干预策略可能会改善人们的生活,并在未来预防神经精神疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信