Markus Kriener, Takashi Koretsune, Ryotaro Arita, Yoshinori Tokura, Yasujiro Taguchi
{"title":"Enhancement of the thermoelectric figure of merit in the Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> by band-structure and -filling control.","authors":"Markus Kriener, Takashi Koretsune, Ryotaro Arita, Yoshinori Tokura, Yasujiro Taguchi","doi":"10.1080/14686996.2024.2412971","DOIUrl":null,"url":null,"abstract":"<p><p>Topological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> upon alloying the trivial semiconductor Zn<sub>3</sub>As<sub>2</sub>. This allows to gain fine-tuned control over both the band filling and the band topology in Cd<sub>3-<i>x</i></sub> Zn <sub><i>x</i></sub> As<sub>2</sub>. As a result, the thermoelectric figure of merit exceeds 0.5 around <math><mi>x</mi> <mo>=</mo> <mn>0.6</mn></math> and <math><mi>x</mi> <mo>=</mo> <mn>1.2</mn></math> at elevated temperatures. The former is due to an enhancement of the power factor, while the latter is a consequence of a strong suppression of the thermal conductivity. In addition, in terms of first-principle band structure calculations, the thermopower in this system is theoretically evaluated, which suggests that the topological aspects of the band structure change when traversing <math><mi>x</mi> <mo>=</mo> <mn>1.2</mn></math> .</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2412971"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2412971","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Topological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal Cd3As2 upon alloying the trivial semiconductor Zn3As2. This allows to gain fine-tuned control over both the band filling and the band topology in Cd3-x Zn x As2. As a result, the thermoelectric figure of merit exceeds 0.5 around and at elevated temperatures. The former is due to an enhancement of the power factor, while the latter is a consequence of a strong suppression of the thermal conductivity. In addition, in terms of first-principle band structure calculations, the thermopower in this system is theoretically evaluated, which suggests that the topological aspects of the band structure change when traversing .
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.