Enhancement of the thermoelectric figure of merit in the Dirac semimetal Cd3As2 by band-structure and -filling control.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI:10.1080/14686996.2024.2412971
Markus Kriener, Takashi Koretsune, Ryotaro Arita, Yoshinori Tokura, Yasujiro Taguchi
{"title":"Enhancement of the thermoelectric figure of merit in the Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> by band-structure and -filling control.","authors":"Markus Kriener, Takashi Koretsune, Ryotaro Arita, Yoshinori Tokura, Yasujiro Taguchi","doi":"10.1080/14686996.2024.2412971","DOIUrl":null,"url":null,"abstract":"<p><p>Topological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> upon alloying the trivial semiconductor Zn<sub>3</sub>As<sub>2</sub>. This allows to gain fine-tuned control over both the band filling and the band topology in Cd<sub>3-<i>x</i></sub> Zn <sub><i>x</i></sub> As<sub>2</sub>. As a result, the thermoelectric figure of merit exceeds 0.5 around <math><mi>x</mi> <mo>=</mo> <mn>0.6</mn></math> and <math><mi>x</mi> <mo>=</mo> <mn>1.2</mn></math> at elevated temperatures. The former is due to an enhancement of the power factor, while the latter is a consequence of a strong suppression of the thermal conductivity. In addition, in terms of first-principle band structure calculations, the thermopower in this system is theoretically evaluated, which suggests that the topological aspects of the band structure change when traversing <math><mi>x</mi> <mo>=</mo> <mn>1.2</mn></math> .</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2412971"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2412971","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal Cd3As2 upon alloying the trivial semiconductor Zn3As2. This allows to gain fine-tuned control over both the band filling and the band topology in Cd3-x Zn x As2. As a result, the thermoelectric figure of merit exceeds 0.5 around x = 0.6 and x = 1.2 at elevated temperatures. The former is due to an enhancement of the power factor, while the latter is a consequence of a strong suppression of the thermal conductivity. In addition, in terms of first-principle band structure calculations, the thermopower in this system is theoretically evaluated, which suggests that the topological aspects of the band structure change when traversing x = 1.2 .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信