Beatriz Godínez-Chaparro, Maria Cristina Rodríguez-Ramos, María Guadalupe Martínez-Lorenzana, Estefanía González-Morales, Karen Pamela Pérez-Ruíz, Antonio Espinosa de Los Monteros-Zuñiga, Felipe Mendoza-Pérez, Miguel Condes-Lara
{"title":"Pramipexole decreases allodynia and hyperalgesia via NF-κB in astrocytes in rats with Parkinson's disease.","authors":"Beatriz Godínez-Chaparro, Maria Cristina Rodríguez-Ramos, María Guadalupe Martínez-Lorenzana, Estefanía González-Morales, Karen Pamela Pérez-Ruíz, Antonio Espinosa de Los Monteros-Zuñiga, Felipe Mendoza-Pérez, Miguel Condes-Lara","doi":"10.1016/j.pbb.2024.173945","DOIUrl":null,"url":null,"abstract":"<p><p>Pain is one of the principal non-motor symptoms of Parkinson's disease (PD), negatively impacting the patient's quality of life. This study aimed to demonstrate whether an effective dose of pramipexole (PPX) can modulate the NF-κB/p-p65 activation in glial cells (astrocytes and microglia) and diminish the hypersensitivity (allodynia and hyperalgesia) in male Wistar rats with PD. For this, 2 μl of 6-hydroxydopamine (6-OHDA, 8 μg/μL/0.2 μl/min) was administered unilaterally in the Substantia Nigra of the Pars Compacta (SNpc) to establish a PD model rat. Motor behavioral tests were used to validate the PD model, and von Frey filaments were used to evaluate allodynia and hyperalgesia. Immunohistochemical and immunofluorescence were used to analyze the level of tyrosine hydroxylase in SNpc and striatum as well as the expression of GFAP, Iba-1, NF-κB/p-65 in the L4-L6 spinal cord dorsal horn. Unilateral 6-OHDA-lesion reduces motor capacity and produces long-term allodynia and hyperalgesia in both hind paws. L4-L6 spinal cord dorsal horn astrocytes and microglia were active in these 6-OHDA-lesioned rats. Moreover, PPX (1 and 3 mg/Kg, i.p./10 days, n = 10 per group) inhibited the bilateral mechanical hypersensitivity, and PPX (3 mg/Kg/i.p./10 days) reduced 6-OHDA-induced astrocyte and microglia activation, as well as reduced NF-κB/p-p65 expression only in astrocytes of dorsal horn spinal cord in the L5-L6. These findings suggest that PPX could alleviate pain by decreasing the activation of microglia and astrocytes through the NF-κB/p-p65 pathway in the dorsal horn spinal cord. Therefore, PPX could be considered an optional tool for improving pain hypersensitivity in PD patients.</p>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":" ","pages":"173945"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.pbb.2024.173945","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pain is one of the principal non-motor symptoms of Parkinson's disease (PD), negatively impacting the patient's quality of life. This study aimed to demonstrate whether an effective dose of pramipexole (PPX) can modulate the NF-κB/p-p65 activation in glial cells (astrocytes and microglia) and diminish the hypersensitivity (allodynia and hyperalgesia) in male Wistar rats with PD. For this, 2 μl of 6-hydroxydopamine (6-OHDA, 8 μg/μL/0.2 μl/min) was administered unilaterally in the Substantia Nigra of the Pars Compacta (SNpc) to establish a PD model rat. Motor behavioral tests were used to validate the PD model, and von Frey filaments were used to evaluate allodynia and hyperalgesia. Immunohistochemical and immunofluorescence were used to analyze the level of tyrosine hydroxylase in SNpc and striatum as well as the expression of GFAP, Iba-1, NF-κB/p-65 in the L4-L6 spinal cord dorsal horn. Unilateral 6-OHDA-lesion reduces motor capacity and produces long-term allodynia and hyperalgesia in both hind paws. L4-L6 spinal cord dorsal horn astrocytes and microglia were active in these 6-OHDA-lesioned rats. Moreover, PPX (1 and 3 mg/Kg, i.p./10 days, n = 10 per group) inhibited the bilateral mechanical hypersensitivity, and PPX (3 mg/Kg/i.p./10 days) reduced 6-OHDA-induced astrocyte and microglia activation, as well as reduced NF-κB/p-p65 expression only in astrocytes of dorsal horn spinal cord in the L5-L6. These findings suggest that PPX could alleviate pain by decreasing the activation of microglia and astrocytes through the NF-κB/p-p65 pathway in the dorsal horn spinal cord. Therefore, PPX could be considered an optional tool for improving pain hypersensitivity in PD patients.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.