Metabolic response of Klebsiella oxytoca to ciprofloxacin exposure: a metabolomics approach.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Shwan Ahmed, Sahand Shams, Dakshat Trivedi, Cassio Lima, Rachel McGalliard, Christopher M Parry, Enitan D Carrol, Howbeer Muhamadali, Royston Goodacre
{"title":"Metabolic response of Klebsiella oxytoca to ciprofloxacin exposure: a metabolomics approach.","authors":"Shwan Ahmed, Sahand Shams, Dakshat Trivedi, Cassio Lima, Rachel McGalliard, Christopher M Parry, Enitan D Carrol, Howbeer Muhamadali, Royston Goodacre","doi":"10.1007/s11306-024-02206-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Rapid detection and identification of pathogens and antimicrobial susceptibility is essential for guiding appropriate antimicrobial therapy and reducing morbidity and mortality associated with sepsis.</p><p><strong>Objectives: </strong>The metabolic response of clinical isolates of Klebsiella oxytoca exposed to different concentrations of ciprofloxacin (the second generation of quinolones antibiotics) were studied in order to investigate underlying mechanisms associated with antimicrobial resistance (AMR).</p><p><strong>Methods: </strong>Metabolomics investigations were performed using Fourier-transform infrared (FT-IR) spectroscopy as a metabolic fingerprinting approach combined with gas chromatography-mass spectrometry (GC-MS) for metabolic profiling.</p><p><strong>Results: </strong>Our findings demonstrated that metabolic fingerprints provided by FT-IR analysis allowed for the differentiation of susceptible and resistant isolates. GC-MS analysis validated these findings, while also providing a deeper understanding of the metabolic alterations caused by exposure to ciprofloxacin. GC-MS metabolic profiling detected 176 metabolic features in the cellular extracts cultivated on BHI broth, and of these, 137 could be identified to Metabolomics Standards Initiative Level 2. Data analysis showed that 40 metabolites (30 Level 2 and 10 unknown) were differentiated between susceptible and resistant isolates. The identified metabolites belonging to central carbon metabolism; arginine and proline metabolism; alanine, aspartate and glutamate metabolism; and pyruvate metabolism. Univariate receiver operating characteristic (ROC) curve analyses revealed that six of these metabolites (glycerol-3-phosphate, O-phosphoethanolamine, asparagine dehydrate, maleimide, tyrosine, and alanine) have a crucial role in distinguishing susceptible from resistant isolates (AUC > 0.84) and contributing to antimicrobial resistance in K. oxtytoca.</p><p><strong>Conclusion: </strong>Our study provides invaluable new insights into the mechanisms underlying development of antimicrobial resistance in K. oxytoca suggests potential therapeutic targets for prevention and identification of AMR in K. oxytoca infections.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 1","pages":"8"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02206-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Rapid detection and identification of pathogens and antimicrobial susceptibility is essential for guiding appropriate antimicrobial therapy and reducing morbidity and mortality associated with sepsis.

Objectives: The metabolic response of clinical isolates of Klebsiella oxytoca exposed to different concentrations of ciprofloxacin (the second generation of quinolones antibiotics) were studied in order to investigate underlying mechanisms associated with antimicrobial resistance (AMR).

Methods: Metabolomics investigations were performed using Fourier-transform infrared (FT-IR) spectroscopy as a metabolic fingerprinting approach combined with gas chromatography-mass spectrometry (GC-MS) for metabolic profiling.

Results: Our findings demonstrated that metabolic fingerprints provided by FT-IR analysis allowed for the differentiation of susceptible and resistant isolates. GC-MS analysis validated these findings, while also providing a deeper understanding of the metabolic alterations caused by exposure to ciprofloxacin. GC-MS metabolic profiling detected 176 metabolic features in the cellular extracts cultivated on BHI broth, and of these, 137 could be identified to Metabolomics Standards Initiative Level 2. Data analysis showed that 40 metabolites (30 Level 2 and 10 unknown) were differentiated between susceptible and resistant isolates. The identified metabolites belonging to central carbon metabolism; arginine and proline metabolism; alanine, aspartate and glutamate metabolism; and pyruvate metabolism. Univariate receiver operating characteristic (ROC) curve analyses revealed that six of these metabolites (glycerol-3-phosphate, O-phosphoethanolamine, asparagine dehydrate, maleimide, tyrosine, and alanine) have a crucial role in distinguishing susceptible from resistant isolates (AUC > 0.84) and contributing to antimicrobial resistance in K. oxtytoca.

Conclusion: Our study provides invaluable new insights into the mechanisms underlying development of antimicrobial resistance in K. oxytoca suggests potential therapeutic targets for prevention and identification of AMR in K. oxytoca infections.

催产克雷伯菌对环丙沙星暴露的代谢反应:代谢组学方法。
快速检测和鉴定病原体和抗菌药物敏感性对于指导适当的抗菌治疗和降低与败血症相关的发病率和死亡率至关重要。目的:研究不同浓度环丙沙星(第二代喹诺酮类抗生素)对产氧克雷伯菌临床分离株的代谢反应,探讨其耐药性(AMR)的相关机制。方法:代谢组学研究采用傅里叶变换红外(FT-IR)光谱作为代谢指纹图谱方法,结合气相色谱-质谱(GC-MS)进行代谢谱分析。结果:我们的研究结果表明,通过FT-IR分析提供的代谢指纹图谱可以区分敏感和耐药菌株。GC-MS分析证实了这些发现,同时也为暴露于环丙沙星引起的代谢改变提供了更深入的了解。GC-MS代谢分析检测到BHI肉汤培养的细胞提取物的176个代谢特征,其中137个可被鉴定为代谢组学标准倡议2级。数据分析显示,40种代谢物(30种为二级代谢物,10种为未知代谢物)在敏感株和耐药株之间存在差异。鉴定的代谢物属于中心碳代谢;精氨酸和脯氨酸代谢;丙氨酸、天冬氨酸和谷氨酸代谢;还有丙酮酸代谢。单变量受试者工作特征(ROC)曲线分析显示,这些代谢物中的6种(甘油-3-磷酸、o -磷酸乙醇胺、脱水天冬酰胺、马来酰亚胺、酪氨酸和丙氨酸)在区分敏感和耐药菌株(AUC bb0 0.84)中起着至关重要的作用,并有助于对K. oxtytoca产生耐药性。结论:我们的研究提供了宝贵的新见解,揭示了氧曲菌耐药发展的机制,为预防和鉴定氧曲菌感染的AMR提供了潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信