Exploration of mechanical properties and osseointegration capacity of porous PEEK composites containing strontium and alendronate under 3D printing: an emerging bone implant.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Binwei Qin, Baifang Zeng, Danwei Shen, Jiayan Deng, Haigang Hu, Xiangyu Wang, Hong Li, Taicong Yang, Lian Xu, Chao Wu
{"title":"Exploration of mechanical properties and osseointegration capacity of porous PEEK composites containing strontium and alendronate under 3D printing: an emerging bone implant.","authors":"Binwei Qin, Baifang Zeng, Danwei Shen, Jiayan Deng, Haigang Hu, Xiangyu Wang, Hong Li, Taicong Yang, Lian Xu, Chao Wu","doi":"10.1080/09205063.2024.2438498","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the biomechanical and osseointegrative properties of 3D printed porous PEEK materials loaded with strontium (Sr) and alendronate (ALN), which prepared porous cylindrical material by a fused deposition molding process, coated with Sr and ALN by hydrothermal reaction and dopamine assistance. According to the different coating materials, it could be divided into the PEEK group, PEEK-ALN group, PEEK-Sr group and PEEK-ALN-Sr group. After completing the mechanical analyses, the materials were implanted into the femoral condyles of New Zealand rabbits and the osteogenic capacity of the bracket materials was assessed by Micro-CT scanning, histology and fluorescence staining. The results showed that ALN and Sr were successfully loaded onto the surface of the material, and the elastic modulus and porosity of the material were not changed significantly after loading. The Micro-CT revealed that the PEEK-ALN-Sr group exhibited differences in bone volume/total Volume (BV/TV), trabecular spacing (TB.Sp),trabecular thickness (TB.Th)and trabeculae number (TB.N) in comparison to the PEEK group and PEEK-ALN group. And more new bone tissues could be observed in the PEEK-ALN-Sr group under 3D reconstruction of the bone proliferation model, toluidine blue and fluorescence staining. Thus, we can conclude that the 3D printed porous PEEK material has stable pore size and porosity, which has an ideal structure for bone growth. The PEEK- ALN-Sr composite material can be used as an emerging bone implant due to its excellent elastic modulus and osseointegration ability and provides a clinically viable treatment for patients with bone defects.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2438498","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to evaluate the biomechanical and osseointegrative properties of 3D printed porous PEEK materials loaded with strontium (Sr) and alendronate (ALN), which prepared porous cylindrical material by a fused deposition molding process, coated with Sr and ALN by hydrothermal reaction and dopamine assistance. According to the different coating materials, it could be divided into the PEEK group, PEEK-ALN group, PEEK-Sr group and PEEK-ALN-Sr group. After completing the mechanical analyses, the materials were implanted into the femoral condyles of New Zealand rabbits and the osteogenic capacity of the bracket materials was assessed by Micro-CT scanning, histology and fluorescence staining. The results showed that ALN and Sr were successfully loaded onto the surface of the material, and the elastic modulus and porosity of the material were not changed significantly after loading. The Micro-CT revealed that the PEEK-ALN-Sr group exhibited differences in bone volume/total Volume (BV/TV), trabecular spacing (TB.Sp),trabecular thickness (TB.Th)and trabeculae number (TB.N) in comparison to the PEEK group and PEEK-ALN group. And more new bone tissues could be observed in the PEEK-ALN-Sr group under 3D reconstruction of the bone proliferation model, toluidine blue and fluorescence staining. Thus, we can conclude that the 3D printed porous PEEK material has stable pore size and porosity, which has an ideal structure for bone growth. The PEEK- ALN-Sr composite material can be used as an emerging bone implant due to its excellent elastic modulus and osseointegration ability and provides a clinically viable treatment for patients with bone defects.

含锶和阿仑膦酸的多孔 PEEK 复合材料在 3D 打印下的机械性能和骨结合能力探索:一种新兴的骨植入物。
本研究的目的是评估装载锶和阿仑膦酸钠(ALN)的3D打印多孔PEEK材料的生物力学和骨整合性能,该材料采用熔融沉积成型工艺制备多孔圆柱形材料,通过水热反应和多巴胺辅助涂覆锶和ALN。根据涂层材料的不同,可分为PEEK族、PEEK- aln族、PEEK- sr族和PEEK- aln - sr族。完成力学分析后,将支架材料植入新西兰兔股骨髁,通过Micro-CT扫描、组织学和荧光染色评估支架材料的成骨能力。结果表明,ALN和Sr成功加载到材料表面,加载后材料的弹性模量和孔隙率没有明显变化。显微ct显示PEEK- aln - sr组骨体积/总积(BV/TV)、骨小梁间距(TB.Sp)、骨小梁厚度(TB.Th)和骨小梁数目(TB.N)与PEEK组和PEEK- aln组比较均有差异。在骨增殖模型三维重建、甲苯胺蓝和荧光染色下,PEEK-ALN-Sr组可观察到更多的新生骨组织。因此,我们可以得出结论,3D打印多孔PEEK材料具有稳定的孔径和孔隙率,具有理想的骨生长结构。PEEK- ALN-Sr复合材料具有优异的弹性模量和骨整合能力,可作为一种新兴的骨种植体,为骨缺损患者提供临床可行的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信