{"title":"Primary angle-closed diseases recognition through artificial intelligence-based anterior segment-optical coherence tomography imaging.","authors":"Haipei Yao, Xiaolei Wang, Yan Suo, Jiangnan He, Chen Chu, Zhuozhen Yang, Qiuzhuo Xu, Jian Zhou, Mingqian Zhu, Xinghuai Sun, Ling Ge","doi":"10.1007/s00417-024-06709-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this study, artificial intelligence (AI) was used to deeply learn the classification of the anterior segment-Optical Coherence Tomography (AS-OCT) images. This AI systems automatically analyzed the angular structure of the AS-OCT images and automatically classified anterior chamber angle. It would improve the efficiency of AS-OCT image analysis.</p><p><strong>Methods: </strong>The subjects were from the glaucoma disease screening and prevention project for elderly people in Shanghai community. Each scan contained 72 cross-sectional AS-OCT frames. We developed a deep learning-based AS-OCT image automatic anterior chamber angle analysis software. Classifier performance was evaluated against glaucoma experts' grading of AS-OCT images as standard. Outcome evaluation included accuracy (ACC) and area under the receiver operator curve (AUC).</p><p><strong>Results: </strong>94895 AS-OCT images were collected from 687 participants, in which 69,243 images were annotated as open, 16,433 images were annotated as closed, and 9219 images were annotated as non-gradable. The class-balanced train data were formed from randomly extracting the same number of open angle images as the closed angle images, which contained 22,393 images (11127 open, 11256 closed). The best-performing classifier was developed by applying transfer learning to the ResNet-50 architecture. against experts' grading, this classifier achieved an AUC of 0.9635.</p><p><strong>Conclusion: </strong>Deep learning classifiers effectively detect angle closure based on automated analysis of AS-OCT images. This system could be used to automate clinical evaluations of the anterior chamber angle and improve efficiency of interpreting AS-OCT images. The results demonstrated the potential of the deep learning system for rapid recognition of high-risk populations of PACD.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-024-06709-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In this study, artificial intelligence (AI) was used to deeply learn the classification of the anterior segment-Optical Coherence Tomography (AS-OCT) images. This AI systems automatically analyzed the angular structure of the AS-OCT images and automatically classified anterior chamber angle. It would improve the efficiency of AS-OCT image analysis.
Methods: The subjects were from the glaucoma disease screening and prevention project for elderly people in Shanghai community. Each scan contained 72 cross-sectional AS-OCT frames. We developed a deep learning-based AS-OCT image automatic anterior chamber angle analysis software. Classifier performance was evaluated against glaucoma experts' grading of AS-OCT images as standard. Outcome evaluation included accuracy (ACC) and area under the receiver operator curve (AUC).
Results: 94895 AS-OCT images were collected from 687 participants, in which 69,243 images were annotated as open, 16,433 images were annotated as closed, and 9219 images were annotated as non-gradable. The class-balanced train data were formed from randomly extracting the same number of open angle images as the closed angle images, which contained 22,393 images (11127 open, 11256 closed). The best-performing classifier was developed by applying transfer learning to the ResNet-50 architecture. against experts' grading, this classifier achieved an AUC of 0.9635.
Conclusion: Deep learning classifiers effectively detect angle closure based on automated analysis of AS-OCT images. This system could be used to automate clinical evaluations of the anterior chamber angle and improve efficiency of interpreting AS-OCT images. The results demonstrated the potential of the deep learning system for rapid recognition of high-risk populations of PACD.
期刊介绍:
Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.