Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1487106
Vahid Jokarfard, Babak Rabiei, Ebrahim Souri Laki, Andreas Börner
{"title":"Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran.","authors":"Vahid Jokarfard, Babak Rabiei, Ebrahim Souri Laki, Andreas Börner","doi":"10.3389/fpls.2024.1487106","DOIUrl":null,"url":null,"abstract":"<p><p>The genotype × environment interaction is one of the effective factors in identifying and introducing cultivars with stable grain yield in different environments. There are many statistical methods for estimating genotype × environment interaction, among which AMMI and GGE-biplot analyses provide better and more interpretable results. The objective of this study was to assess the genotype × environment interaction, as well as the adaptability and stability of 40 quinoa genotypes. The experiment was carried out in a randomized complete block design with three replications in eight environments (four locations of Iran and two years). The AMMI analysis of variance showed that the main effects of genotype and environment, as well as the interaction effect of genotype × environment were significant on grain yield. Separation of genotype × environment interaction based on the principal component method showed that the first six principal components were significant and accounted for 47.6%, 22.5%, 9%, 7%, 6% and 4.3% of the genotype × environment interaction variance, respectively. Based on the AMMI model, genotypes G16, G19, G35, G30, G39, G24, and G18 were identified as high-yielding and stable genotypes with high general adaptability. In contrast, genotypes G36, G27, G38, G9, G28, G29, G23, G34, G13, and G12 were the most unstable genotypes in the studied environments. In GGE-biplot analysis, two mega-environments were identified, and genotypes G16, G19, G25, and G17 were also identified as high-yielding and stable genotypes for these environments. Also, based on the biplot diagram of the ideal genotype, genotypes G16, G19, G17, and G35 were the nearest genotypes to the ideal genotype. In total, the results of various analyses showed that the three genotypes G16 and G19 were the superior genotypes of this experiment in terms of grain yield and stability. These genotypes can be introduced as high-yielding and stable genotypes to the climatic conditions of the studied areas.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1487106"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1487106","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The genotype × environment interaction is one of the effective factors in identifying and introducing cultivars with stable grain yield in different environments. There are many statistical methods for estimating genotype × environment interaction, among which AMMI and GGE-biplot analyses provide better and more interpretable results. The objective of this study was to assess the genotype × environment interaction, as well as the adaptability and stability of 40 quinoa genotypes. The experiment was carried out in a randomized complete block design with three replications in eight environments (four locations of Iran and two years). The AMMI analysis of variance showed that the main effects of genotype and environment, as well as the interaction effect of genotype × environment were significant on grain yield. Separation of genotype × environment interaction based on the principal component method showed that the first six principal components were significant and accounted for 47.6%, 22.5%, 9%, 7%, 6% and 4.3% of the genotype × environment interaction variance, respectively. Based on the AMMI model, genotypes G16, G19, G35, G30, G39, G24, and G18 were identified as high-yielding and stable genotypes with high general adaptability. In contrast, genotypes G36, G27, G38, G9, G28, G29, G23, G34, G13, and G12 were the most unstable genotypes in the studied environments. In GGE-biplot analysis, two mega-environments were identified, and genotypes G16, G19, G25, and G17 were also identified as high-yielding and stable genotypes for these environments. Also, based on the biplot diagram of the ideal genotype, genotypes G16, G19, G17, and G35 were the nearest genotypes to the ideal genotype. In total, the results of various analyses showed that the three genotypes G16 and G19 were the superior genotypes of this experiment in terms of grain yield and stability. These genotypes can be introduced as high-yielding and stable genotypes to the climatic conditions of the studied areas.

伊朗四个地区藜麦基因型谷物产量的稳定性和适应性。
基因型 × 环境互作是识别和引进不同环境下粮食产量稳定的栽培品种的有效因素之一。估算基因型 × 环境互作的统计方法有很多,其中 AMMI 和 GGE 双图分析法能提供更好、更可解释的结果。本研究的目的是评估基因型与环境的交互作用,以及 40 种藜麦基因型的适应性和稳定性。实验采用随机完全区组设计,在八个环境(伊朗的四个地点和两个年份)中进行三次重复。AMMI 方差分析表明,基因型和环境的主效应以及基因型 × 环境的交互效应对谷物产量有显著影响。基于主成分法的基因型 × 环境交互作用分离表明,前六个主成分均显著,分别占基因型 × 环境交互作用方差的 47.6%、22.5%、9%、7%、6% 和 4.3%。根据 AMMI 模型,基因型 G16、G19、G35、G30、G39、G24 和 G18 被确定为高产稳产基因型,具有较高的一般适应性。相比之下,基因型 G36、G27、G38、G9、G28、G29、G23、G34、G13 和 G12 在所研究的环境中是最不稳定的基因型。在 GGE 双图谱分析中,确定了两个巨型环境,基因型 G16、G19、G25 和 G17 也被确定为这些环境中的高产和稳定基因型。此外,根据理想基因型的双图谱图,基因型 G16、G19、G17 和 G35 是最接近理想基因型的基因型。总之,各种分析结果表明,G16 和 G19 这三个基因型在谷物产量和稳定性方面是本试验的优良基因型。这些基因型可作为高产稳产基因型引入研究地区的气候条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信