Marieke Warmerdam, Marcel A Vieira-Lara, Robert Mans, Jean Marc Daran, Jack T Pronk
{"title":"Specific growth rates and growth stoichiometries of Saccharomycotina yeasts on ethanol as sole carbon and energy substrate.","authors":"Marieke Warmerdam, Marcel A Vieira-Lara, Robert Mans, Jean Marc Daran, Jack T Pronk","doi":"10.1093/femsyr/foae037","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1). Saccharomyces cerevisiae and Kluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomass gethanol-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I-encoding genes: Phaffomyces thermotolerans (0.58 g g-1), Pichia ethanolica (0.59 g g-1), Saturnispora dispora (0.66 g g-1), Ogataea parapolymorpha (0.67 g g-1), and Cyberlindnera jadinii (0.73 g g-1). Cyberlindnera jadinii biomass showed the highest protein content (59 ± 2%) of these yeasts. Its biomass yield corresponded to 88% of the theoretical maximum that is reached when growth is limited by assimilation rather than by energy availability. This study suggests that energy coupling of mitochondrial respiration and its regulation will become key factors for selecting and improving yeast strains for ethanol-based processes.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1). Saccharomyces cerevisiae and Kluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomass gethanol-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I-encoding genes: Phaffomyces thermotolerans (0.58 g g-1), Pichia ethanolica (0.59 g g-1), Saturnispora dispora (0.66 g g-1), Ogataea parapolymorpha (0.67 g g-1), and Cyberlindnera jadinii (0.73 g g-1). Cyberlindnera jadinii biomass showed the highest protein content (59 ± 2%) of these yeasts. Its biomass yield corresponded to 88% of the theoretical maximum that is reached when growth is limited by assimilation rather than by energy availability. This study suggests that energy coupling of mitochondrial respiration and its regulation will become key factors for selecting and improving yeast strains for ethanol-based processes.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.