Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to Nifedipine and Amlodipine drugs.
Carol Readhead, Simon Mahler, Zhenyu Dong, Yuki Sato, Changhuei Yang, Marianne E Bronner
{"title":"Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to Nifedipine and Amlodipine drugs.","authors":"Carol Readhead, Simon Mahler, Zhenyu Dong, Yuki Sato, Changhuei Yang, Marianne E Bronner","doi":"10.1016/j.ydbio.2024.12.005","DOIUrl":null,"url":null,"abstract":"<p><p>Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow noninvasively, we test the utility of the developing chick heart as a functional model for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick's heart rate, blood flow, and vascular size within 5-20 min after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 h. Nifedipine showed a rapid reduction in heart rate and blood flow dynamics at a concentration ten times lower than Amlodipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost-effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart.</p>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":" ","pages":"46-54"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ydbio.2024.12.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow noninvasively, we test the utility of the developing chick heart as a functional model for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick's heart rate, blood flow, and vascular size within 5-20 min after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 h. Nifedipine showed a rapid reduction in heart rate and blood flow dynamics at a concentration ten times lower than Amlodipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost-effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.