Activation of ferritin light chain (FTL) by transcription factor salmonella pathogenicity island 1 modulates glycolysis to drive metastasis of ovarian cancer cells.

IF 2.9 3区 医学 Q2 ONCOLOGY
Chunxiang Li, Yubin Yang, Yuting Lin, Yingbin Lian, Dinglong Pan, Lin Lin, Luhong Li
{"title":"Activation of ferritin light chain (FTL) by transcription factor salmonella pathogenicity island 1 modulates glycolysis to drive metastasis of ovarian cancer cells.","authors":"Chunxiang Li, Yubin Yang, Yuting Lin, Yingbin Lian, Dinglong Pan, Lin Lin, Luhong Li","doi":"10.1080/14737140.2024.2439558","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer (OC) is the most lethal gynecological cancer often diagnosed at an advanced stage due to a lack of effective biomarkers. Ferritin light chain (FTL) is implicated in the development of various cancers, but its impact on OC remains unknown.</p><p><strong>Research design and methods: </strong>Bioinformatics methods were utilized to analyze FTL. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were employed for expression detection, and cell counting kit- 8, and transwell assays were for cell biological functions assessment. Extracellular acidification rate, oxygen consumption rate, and glycolytic metabolite contents were measured. Dual-luciferase and chromatin immunoprecipitation assay validated binding relationship. Xenografted tumor models in nude mice verified the role of FTL <i>in</i> <i>vivo</i>.</p><p><strong>Results: </strong>Cell function experiments revealed that FTL facilitated proliferation, migration, and invasion of OC cells. Rescue experiments unveiled that 2-Deoxy-D-glucose attenuated stimulation on OC cell metastasis and glycolysis by FTL overexpression. Salmonella pathogenicity island 1 (SPI1) up-regulated FTL expression to promote glycolysis and metastasis. FTL knockdown inhibited tumor growth and suppressed glycolysis and cell metastasis <i>in</i> <i>vivo</i>, while SPI1 overexpression attenuated these effects.</p><p><strong>Conclusions: </strong>This study demonstrated pro-metastatic mechanisms of transcription factor SPI1/FTL axis in OC and suggested it as a potential target for treating OC metastasis.</p>","PeriodicalId":12099,"journal":{"name":"Expert Review of Anticancer Therapy","volume":" ","pages":"1-12"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Anticancer Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14737140.2024.2439558","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ovarian cancer (OC) is the most lethal gynecological cancer often diagnosed at an advanced stage due to a lack of effective biomarkers. Ferritin light chain (FTL) is implicated in the development of various cancers, but its impact on OC remains unknown.

Research design and methods: Bioinformatics methods were utilized to analyze FTL. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were employed for expression detection, and cell counting kit- 8, and transwell assays were for cell biological functions assessment. Extracellular acidification rate, oxygen consumption rate, and glycolytic metabolite contents were measured. Dual-luciferase and chromatin immunoprecipitation assay validated binding relationship. Xenografted tumor models in nude mice verified the role of FTL in vivo.

Results: Cell function experiments revealed that FTL facilitated proliferation, migration, and invasion of OC cells. Rescue experiments unveiled that 2-Deoxy-D-glucose attenuated stimulation on OC cell metastasis and glycolysis by FTL overexpression. Salmonella pathogenicity island 1 (SPI1) up-regulated FTL expression to promote glycolysis and metastasis. FTL knockdown inhibited tumor growth and suppressed glycolysis and cell metastasis in vivo, while SPI1 overexpression attenuated these effects.

Conclusions: This study demonstrated pro-metastatic mechanisms of transcription factor SPI1/FTL axis in OC and suggested it as a potential target for treating OC metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
3.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Expert Review of Anticancer Therapy (ISSN 1473-7140) provides expert appraisal and commentary on the major trends in cancer care and highlights the performance of new therapeutic and diagnostic approaches. Coverage includes tumor management, novel medicines, anticancer agents and chemotherapy, biological therapy, cancer vaccines, therapeutic indications, biomarkers and diagnostics, and treatment guidelines. All articles are subject to rigorous peer-review, and the journal makes an essential contribution to decision-making in cancer care. Comprehensive coverage in each review is complemented by the unique Expert Review format and includes the following sections: Expert Opinion - a personal view of the data presented in the article, a discussion on the developments that are likely to be important in the future, and the avenues of research likely to become exciting as further studies yield more detailed results Article Highlights – an executive summary of the author’s most critical points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信