Knockdown of Gfi1 increases BMSCs exosomal miR-150-3p to inhibit osteoblast ferroptosis in steroid-induced osteonecrosis of the femoral head through BTRC/Nrf2 axis

IF 1.3 4区 医学 Q4 ENDOCRINOLOGY & METABOLISM
Liwen Zheng, Changjie Zhang, Lele Liao, Zhijie Hai, Xin Luo, Haoliang Xiao
{"title":"Knockdown of Gfi1 increases BMSCs exosomal miR-150-3p to inhibit osteoblast ferroptosis in steroid-induced osteonecrosis of the femoral head through BTRC/Nrf2 axis","authors":"Liwen Zheng, Changjie Zhang, Lele Liao, Zhijie Hai, Xin Luo, Haoliang Xiao","doi":"10.1507/endocrj.EJ24-0306","DOIUrl":null,"url":null,"abstract":"<p><p>The ferroptosis of osteoblasts has been demonstrated to play a significant role in the development of steroid-induced osteonecrosis of the femoral head (SONFH). Additionally, microRNAs (miRNAs) have been identified as regulators of SONFH progression. However, the precise role of miRNAs in the regulation of osteoblast ferroptosis remains unclear. This study explored the role of exosomal miR-150-3p, derived from bone marrow mesenchymal stem cells (BMSCs), in osteoblast ferroptosis in SONFH. Dexamethasone (DEX) was used to treat osteoblasts to induce ferroptosis. BMSCs exosomes with different levels of miR-150-3p were introduced into a co-culture with the cells. To verify the targeting relationship between growth factor independence 1 (Gfi1) and the miR-150-3p promoter, as well as between miR-150-3p and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC), respectively, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), and dual luciferase assays were employed. It was found that BMSCs-Exos-miR-150-3p mitigated DEX-triggered ferroptosis in osteoblasts. MiR-150-3p directly targeted BTRC, leading to its downregulation in osteoblasts. The BTRC/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the inhibition of DEX-induced osteoblast ferroptosis by BMSCs-Exos-miR-150-3p. Overexpression of BTRC reversed the inhibitory effect of BMSCs-Exos-miR-150-3p. In a SONFH rat model, BMSCs-Exos-miR-150-3p alleviated ferroptosis in osteoblasts through BTRC/Nrf2. In addition, Gfi1 bonded to the miR-150-3p promoter and inhibited its transcription. Gfi1 silencing elevated miR-150-3p levels and improves cell viability of BMSCs. In conclusion, our results suggest that BMSCs-Exos-miR-150-3p alleviates SONFH by suppressing ferroptosis through the regulation of BTRC/Nrf2 and miR-150-3p may be a potential target for SONFH treatment.</p>","PeriodicalId":11631,"journal":{"name":"Endocrine journal","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1507/endocrj.EJ24-0306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The ferroptosis of osteoblasts has been demonstrated to play a significant role in the development of steroid-induced osteonecrosis of the femoral head (SONFH). Additionally, microRNAs (miRNAs) have been identified as regulators of SONFH progression. However, the precise role of miRNAs in the regulation of osteoblast ferroptosis remains unclear. This study explored the role of exosomal miR-150-3p, derived from bone marrow mesenchymal stem cells (BMSCs), in osteoblast ferroptosis in SONFH. Dexamethasone (DEX) was used to treat osteoblasts to induce ferroptosis. BMSCs exosomes with different levels of miR-150-3p were introduced into a co-culture with the cells. To verify the targeting relationship between growth factor independence 1 (Gfi1) and the miR-150-3p promoter, as well as between miR-150-3p and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC), respectively, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), and dual luciferase assays were employed. It was found that BMSCs-Exos-miR-150-3p mitigated DEX-triggered ferroptosis in osteoblasts. MiR-150-3p directly targeted BTRC, leading to its downregulation in osteoblasts. The BTRC/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the inhibition of DEX-induced osteoblast ferroptosis by BMSCs-Exos-miR-150-3p. Overexpression of BTRC reversed the inhibitory effect of BMSCs-Exos-miR-150-3p. In a SONFH rat model, BMSCs-Exos-miR-150-3p alleviated ferroptosis in osteoblasts through BTRC/Nrf2. In addition, Gfi1 bonded to the miR-150-3p promoter and inhibited its transcription. Gfi1 silencing elevated miR-150-3p levels and improves cell viability of BMSCs. In conclusion, our results suggest that BMSCs-Exos-miR-150-3p alleviates SONFH by suppressing ferroptosis through the regulation of BTRC/Nrf2 and miR-150-3p may be a potential target for SONFH treatment.

敲除Gfi1可增加BMSCs外泌miR-150-3p,从而通过BTRC/Nrf2轴抑制类固醇诱导的股骨头坏死中的成骨细胞铁凋亡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Endocrine journal
Endocrine journal 医学-内分泌学与代谢
CiteScore
4.30
自引率
5.00%
发文量
224
审稿时长
1.5 months
期刊介绍: Endocrine Journal is an open access, peer-reviewed online journal with a long history. This journal publishes peer-reviewed research articles in multifaceted fields of basic, translational and clinical endocrinology. Endocrine Journal provides a chance to exchange your ideas, concepts and scientific observations in any area of recent endocrinology. Manuscripts may be submitted as Original Articles, Notes, Rapid Communications or Review Articles. We have a rapid reviewing and editorial decision system and pay a special attention to our quick, truly scientific and frequently-citable publication. Please go through the link for author guideline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信