Development of a machine learning model for prediction of intraventricular hemorrhage in premature neonates.

IF 1.3 4区 医学 Q4 CLINICAL NEUROLOGY
Emad Saeedi, Mojtaba Mashhadinejad, Amin Tavallaii
{"title":"Development of a machine learning model for prediction of intraventricular hemorrhage in premature neonates.","authors":"Emad Saeedi, Mojtaba Mashhadinejad, Amin Tavallaii","doi":"10.1007/s00381-024-06714-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Intraventricular hemorrhage (IVH) is a common and severe complication in premature neonates, leading to long-term neurological impairments. Early prediction and identification of risk factors for IVH in premature neonates are crucial for improving clinical outcomes. This study aimed to predict IVH in premature neonates and determine risk factors using machine learning (ML) algorithms.</p><p><strong>Methods: </strong>This study investigated the medical records of premature neonates admitted to the neonatal intensive care unit. The patients were labeled as case (IVH) and control (No IVH). The independent variables included demographic, clinical, laboratory, and imaging data. Machine learning algorithms, including random Forest, support vector machine, logistic regression, and k-nearest neighbor, were used to train the models after data preprocessing and feature selection. The performance of the trained models was evaluated using various performance metrics.</p><p><strong>Results: </strong>Data from 160 premature neonates were collected including 70 patients with IVH. The identified risk factors for IVH were the gestational age, birth weight, low Apgar scores at 1 min and 5 min, delivery method, head circumference, and various laboratory findings. The random forest algorithm demonstrated the highest sensitivity, specificity, accuracy, and F1 score in predicting IVH in premature neonates, with a great area under the receiver operating characteristic curve of 0.99.</p><p><strong>Conclusion: </strong>This study revealed that the random forest model effectively predicted IVH in premature neonates. The early identification of premature neonates at higher risk of IVH allows for preventive measures and interventions to reduce the incidence and morbidity of IVH in these patients.</p>","PeriodicalId":9970,"journal":{"name":"Child's Nervous System","volume":"41 1","pages":"51"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child's Nervous System","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00381-024-06714-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Intraventricular hemorrhage (IVH) is a common and severe complication in premature neonates, leading to long-term neurological impairments. Early prediction and identification of risk factors for IVH in premature neonates are crucial for improving clinical outcomes. This study aimed to predict IVH in premature neonates and determine risk factors using machine learning (ML) algorithms.

Methods: This study investigated the medical records of premature neonates admitted to the neonatal intensive care unit. The patients were labeled as case (IVH) and control (No IVH). The independent variables included demographic, clinical, laboratory, and imaging data. Machine learning algorithms, including random Forest, support vector machine, logistic regression, and k-nearest neighbor, were used to train the models after data preprocessing and feature selection. The performance of the trained models was evaluated using various performance metrics.

Results: Data from 160 premature neonates were collected including 70 patients with IVH. The identified risk factors for IVH were the gestational age, birth weight, low Apgar scores at 1 min and 5 min, delivery method, head circumference, and various laboratory findings. The random forest algorithm demonstrated the highest sensitivity, specificity, accuracy, and F1 score in predicting IVH in premature neonates, with a great area under the receiver operating characteristic curve of 0.99.

Conclusion: This study revealed that the random forest model effectively predicted IVH in premature neonates. The early identification of premature neonates at higher risk of IVH allows for preventive measures and interventions to reduce the incidence and morbidity of IVH in these patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Child's Nervous System
Child's Nervous System 医学-临床神经学
CiteScore
3.00
自引率
7.10%
发文量
322
审稿时长
3 months
期刊介绍: The journal has been expanded to encompass all aspects of pediatric neurosciences concerning the developmental and acquired abnormalities of the nervous system and its coverings, functional disorders, epilepsy, spasticity, basic and clinical neuro-oncology, rehabilitation and trauma. Global pediatric neurosurgery is an additional field of interest that will be considered for publication in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信