Rowan L Hassman, Iona M H McCabe, Kaia M Smith, Linda J S Allen
{"title":"Stochastic Models of Zoonotic Avian Influenza with Multiple Hosts, Environmental Transmission, and Migration in the Natural Reservoir.","authors":"Rowan L Hassman, Iona M H McCabe, Kaia M Smith, Linda J S Allen","doi":"10.1007/s11538-024-01396-9","DOIUrl":null,"url":null,"abstract":"<p><p>Avian influenza virus type A causes an infectious disease that circulates among wild bird populations and regularly spills over into domesticated animals, such as poultry and swine. As the virus replicates in these intermediate hosts, mutations occur, increasing the likelihood of emergence of a new variant with greater transmission to humans and a potential threat to public health. Prior models for spread of avian influenza have included some combinations of the following components: multi-host populations, spillover into humans, environmental transmission, seasonality, and migration. We develop an ordinary differential equation (ODE) model for spread of a low pathogenic avian influenza virus that combines all of these factors, and we translate this into a stochastic continuous-time Markov chain model. Linearization of the ODE near the disease-free solution leads to the basic reproduction number <math><msub><mi>R</mi> <mn>0</mn></msub> </math> , a threshold for disease extinction in both the ODE and Markov chain. The linearized Markov chain leads to a branching process approximation which provides an estimate for probability of disease extinction, i.e., probability no major disease outbreak in the multi-host system. The probability of disease extinction depends on the time and the population into which infection is introduced and reflects the seasonality inherent in the system. Some of the most sensitive parameters to model outcomes include wild bird recovery and environmental transmission. We find that migratory wild birds can drive infection numbers in other populations even when transmission parameters for those populations are low, and that environmental transmission can be a significant driver of infections.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 1","pages":"14"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01396-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Avian influenza virus type A causes an infectious disease that circulates among wild bird populations and regularly spills over into domesticated animals, such as poultry and swine. As the virus replicates in these intermediate hosts, mutations occur, increasing the likelihood of emergence of a new variant with greater transmission to humans and a potential threat to public health. Prior models for spread of avian influenza have included some combinations of the following components: multi-host populations, spillover into humans, environmental transmission, seasonality, and migration. We develop an ordinary differential equation (ODE) model for spread of a low pathogenic avian influenza virus that combines all of these factors, and we translate this into a stochastic continuous-time Markov chain model. Linearization of the ODE near the disease-free solution leads to the basic reproduction number , a threshold for disease extinction in both the ODE and Markov chain. The linearized Markov chain leads to a branching process approximation which provides an estimate for probability of disease extinction, i.e., probability no major disease outbreak in the multi-host system. The probability of disease extinction depends on the time and the population into which infection is introduced and reflects the seasonality inherent in the system. Some of the most sensitive parameters to model outcomes include wild bird recovery and environmental transmission. We find that migratory wild birds can drive infection numbers in other populations even when transmission parameters for those populations are low, and that environmental transmission can be a significant driver of infections.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.