Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-11-21 eCollection Date: 2024-12-01 DOI:10.1364/BOE.538473
Somayyeh Soltanian-Zadeh, Katherine Kovalick, Samira Aghayee, Donald T Miller, Zhuolin Liu, Daniel X Hammer, Sina Farsiu
{"title":"Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy.","authors":"Somayyeh Soltanian-Zadeh, Katherine Kovalick, Samira Aghayee, Donald T Miller, Zhuolin Liu, Daniel X Hammer, Sina Farsiu","doi":"10.1364/BOE.538473","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 12","pages":"6922-6939"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.538473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.

视网膜色素上皮(RPE)细胞对视网膜的正常功能至关重要。这些细胞的形态缺陷与多种视网膜神经退行性疾病有关。自适应光学-光学相干断层扫描(AO-OCT)具有细胞分辨率和深度切片功能,可在体内观察单个 RPE 细胞。要快速、经济、客观地量化 RPE 镶嵌的结构特性,就必须开发一种自动细胞分割算法。本文介绍了一种基于深度学习的方法,该方法通过部分注释训练来检测 AO-OCT 图像中的 RPE 细胞,其准确性优于人类表现。我们在网上提供了代码、成像数据集和人工专家标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信