A likelihood approach to incorporating self-report data in HIV recency classification.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae147
Wenlong Yang, Danping Liu, Le Bao, Runze Li
{"title":"A likelihood approach to incorporating self-report data in HIV recency classification.","authors":"Wenlong Yang, Danping Liu, Le Bao, Runze Li","doi":"10.1093/biomtc/ujae147","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating new HIV infections is significant yet challenging due to the difficulty in distinguishing between recent and long-term infections. We demonstrate that HIV recency status (recent versus long-term) could be determined from self-report testing history and biomarkers, which are increasingly available in bio-behavioral surveys. HIV recency status is partially observed, given the self-report testing history. For example, people who tested positive for HIV over 1 year ago should have a long-term infection. Based on the nationally representative samples collected by the Population-based HIV Impact Assessment (PHIA) Project, we propose a likelihood-based probabilistic model for HIV recency classification. The model incorporates individuals with known recency status based on testing histories and individuals whose recency status could not be determined and integrates the mechanism of how HIV recency status depends on biomarkers and the mechanism of how HIV recency status, together with the self-report time of the most recent HIV test, impacts the test results. We compare our method to logistic regression and the binary classification tree (current practice) on Malawi PHIA data, as well as on simulated data. Our model obtains more efficient and less biased parameter estimates and is relatively robust to potential reporting error and model misspecification.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae147","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating new HIV infections is significant yet challenging due to the difficulty in distinguishing between recent and long-term infections. We demonstrate that HIV recency status (recent versus long-term) could be determined from self-report testing history and biomarkers, which are increasingly available in bio-behavioral surveys. HIV recency status is partially observed, given the self-report testing history. For example, people who tested positive for HIV over 1 year ago should have a long-term infection. Based on the nationally representative samples collected by the Population-based HIV Impact Assessment (PHIA) Project, we propose a likelihood-based probabilistic model for HIV recency classification. The model incorporates individuals with known recency status based on testing histories and individuals whose recency status could not be determined and integrates the mechanism of how HIV recency status depends on biomarkers and the mechanism of how HIV recency status, together with the self-report time of the most recent HIV test, impacts the test results. We compare our method to logistic regression and the binary classification tree (current practice) on Malawi PHIA data, as well as on simulated data. Our model obtains more efficient and less biased parameter estimates and is relatively robust to potential reporting error and model misspecification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信