BreakNet: discontinuity-resilient multi-scale transformer segmentation of retinal layers.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-11-06 eCollection Date: 2024-12-01 DOI:10.1364/BOE.538904
Razieh Ganjee, Bingjie Wang, Lingyun Wang, Chengcheng Zhao, José-Alain Sahel, Shaohua Pi
{"title":"BreakNet: discontinuity-resilient multi-scale transformer segmentation of retinal layers.","authors":"Razieh Ganjee, Bingjie Wang, Lingyun Wang, Chengcheng Zhao, José-Alain Sahel, Shaohua Pi","doi":"10.1364/BOE.538904","DOIUrl":null,"url":null,"abstract":"<p><p>Visible light optical coherence tomography (vis-OCT) is gaining traction for retinal imaging due to its high resolution and functional capabilities. However, the significant absorption of hemoglobin in the visible light range leads to pronounced shadow artifacts from retinal blood vessels, posing challenges for accurate layer segmentation. In this study, we present BreakNet, a multi-scale Transformer-based segmentation model designed to address boundary discontinuities caused by these shadow artifacts. BreakNet utilizes hierarchical Transformer and convolutional blocks to extract multi-scale global and local feature maps, capturing essential contextual, textural, and edge characteristics. The model incorporates decoder blocks that expand pathways to enhance the extraction of fine details and semantic information, ensuring precise segmentation. Evaluated on rodent retinal images acquired with prototype vis-OCT, BreakNet demonstrated superior performance over state-of-the-art segmentation models, such as TCCT-BP and U-Net, even when faced with limited-quality ground truth data. Our findings indicate that BreakNet has the potential to significantly improve retinal quantification and analysis.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 12","pages":"6725-6738"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.538904","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Visible light optical coherence tomography (vis-OCT) is gaining traction for retinal imaging due to its high resolution and functional capabilities. However, the significant absorption of hemoglobin in the visible light range leads to pronounced shadow artifacts from retinal blood vessels, posing challenges for accurate layer segmentation. In this study, we present BreakNet, a multi-scale Transformer-based segmentation model designed to address boundary discontinuities caused by these shadow artifacts. BreakNet utilizes hierarchical Transformer and convolutional blocks to extract multi-scale global and local feature maps, capturing essential contextual, textural, and edge characteristics. The model incorporates decoder blocks that expand pathways to enhance the extraction of fine details and semantic information, ensuring precise segmentation. Evaluated on rodent retinal images acquired with prototype vis-OCT, BreakNet demonstrated superior performance over state-of-the-art segmentation models, such as TCCT-BP and U-Net, even when faced with limited-quality ground truth data. Our findings indicate that BreakNet has the potential to significantly improve retinal quantification and analysis.

可见光光学相干断层扫描(vis-OCT)具有高分辨率和功能强大的特点,因此在视网膜成像方面越来越受到重视。然而,血红蛋白在可见光范围内的大量吸收会导致视网膜血管产生明显的阴影伪影,给准确的图层分割带来挑战。在这项研究中,我们提出了基于多尺度变换器的分割模型 BreakNet,旨在解决这些阴影伪影造成的边界不连续性问题。BreakNet 利用分层变换器和卷积块提取多尺度全局和局部特征图,捕捉重要的上下文、纹理和边缘特征。该模型包含解码器块,可扩展路径以加强对精细细节和语义信息的提取,从而确保精确的分割。在使用原型 vis-OCT 采集的啮齿动物视网膜图像上进行评估后,BreakNet 显示出优于 TCCT-BP 和 U-Net 等最先进分割模型的性能,即使在面对质量有限的地面实况数据时也是如此。我们的研究结果表明,BreakNet 有潜力显著改善视网膜量化和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信