Alex Cavalleri, Chiara Astori, Jekaterina Truskina, Mara Cucinotta, Etienne Farcot, Elina Chrysanthou, Xiaocai Xu, Jose M Muino, Kerstin Kaufmann, Martin M Kater, Teva Vernoux, Dolf Weijers, Malcolm J Bennett, Rahul Bhosale, Anthony Bishopp, Lucia Colombo
{"title":"Auxin-dependent post-translational regulation of MONOPTEROS in the Arabidopsis root.","authors":"Alex Cavalleri, Chiara Astori, Jekaterina Truskina, Mara Cucinotta, Etienne Farcot, Elina Chrysanthou, Xiaocai Xu, Jose M Muino, Kerstin Kaufmann, Martin M Kater, Teva Vernoux, Dolf Weijers, Malcolm J Bennett, Rahul Bhosale, Anthony Bishopp, Lucia Colombo","doi":"10.1016/j.celrep.2024.115083","DOIUrl":null,"url":null,"abstract":"<p><p>Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition. Here, we show that levels of the ARF5/MONOPTEROS (MP) protein are regulated in a cell-type-specific and isoform-dependent manner. We find that the stability of MP isoforms is differentially controlled depending on the auxin level. The canonical MP isoform is degraded by the proteasome in root tissues with low auxin levels. While auxin sharpens the MP localization domain in roots, it does not do so in ovules or embryos. Our research highlights a mechanism for providing spatial control of auxin signaling capacity. Together with recent advances in understanding the tissue-specific expression and post-transcriptional modification of auxin signaling components, these results provide insights into understanding how auxin can elicit so many distinct responses.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 12","pages":"115083"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115083","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition. Here, we show that levels of the ARF5/MONOPTEROS (MP) protein are regulated in a cell-type-specific and isoform-dependent manner. We find that the stability of MP isoforms is differentially controlled depending on the auxin level. The canonical MP isoform is degraded by the proteasome in root tissues with low auxin levels. While auxin sharpens the MP localization domain in roots, it does not do so in ovules or embryos. Our research highlights a mechanism for providing spatial control of auxin signaling capacity. Together with recent advances in understanding the tissue-specific expression and post-transcriptional modification of auxin signaling components, these results provide insights into understanding how auxin can elicit so many distinct responses.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.