Nitrate Electroreduction to Ammonia over Copper-based Catalysts.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-12-15 DOI:10.1002/cssc.202402331
Tailei Hou, Tianshang Shan, Hongpan Rong, Jiatao Zhang
{"title":"Nitrate Electroreduction to Ammonia over Copper-based Catalysts.","authors":"Tailei Hou, Tianshang Shan, Hongpan Rong, Jiatao Zhang","doi":"10.1002/cssc.202402331","DOIUrl":null,"url":null,"abstract":"<p><p>The electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3) holds substantial promise, as it transforms NO3- from polluted water into valuable NH3. However, the reaction is limited by sluggish kinetics and low NH3 selectivity. Cu-based catalysts with unique electronic structures demonstrate rapid NO3- to NO2- rate-determining step (RDS) and fast electrocatalytic nitrate reduction reaction (eNO3RR) kinetics among non-noble metal catalysts. Nonetheless, achieving high robustness and selectivity for NH3 with Cu-based catalysts remains a significant challenge. This review provides a comprehensive overview of the reaction mechanisms in eNO3RR, highlights how the structures of monometallic and bimetallic Cu-based catalyst affect catalytic properties, and discusses the current challenges as well as prospects in eNO3RR.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402331"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402331","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3) holds substantial promise, as it transforms NO3- from polluted water into valuable NH3. However, the reaction is limited by sluggish kinetics and low NH3 selectivity. Cu-based catalysts with unique electronic structures demonstrate rapid NO3- to NO2- rate-determining step (RDS) and fast electrocatalytic nitrate reduction reaction (eNO3RR) kinetics among non-noble metal catalysts. Nonetheless, achieving high robustness and selectivity for NH3 with Cu-based catalysts remains a significant challenge. This review provides a comprehensive overview of the reaction mechanisms in eNO3RR, highlights how the structures of monometallic and bimetallic Cu-based catalyst affect catalytic properties, and discusses the current challenges as well as prospects in eNO3RR.

在铜基催化剂上将硝酸盐电还原成氨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信