Docetaxel-induced liver and kidney toxicity in rats can be alleviated by suppressing oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis and autophagy signaling pathways after silymarin treatment.

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Ozge Kandemir, Sefa Kucukler, Selim Comakli, Cihan Gur, Mustafa İleriturk
{"title":"Docetaxel-induced liver and kidney toxicity in rats can be alleviated by suppressing oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis and autophagy signaling pathways after silymarin treatment.","authors":"Ozge Kandemir, Sefa Kucukler, Selim Comakli, Cihan Gur, Mustafa İleriturk","doi":"10.1016/j.fct.2024.115202","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 20 million new cancer cases have occurred worldwide, and dose limitation occurs because of the liver and kidney toxicity of chemotherapeutic agents. Inflammation/apoptosis/ROS pathways appear to be activated in the liver and kidney toxicity of chemotherapeutic agents. This study was conducted to investigate the potential effects of silymarin (SLY) use against docetaxel (DTX)-induced liver and kidney damage in rats. For this purpose, 30 mg/kg DTX was administered intraperitoneally to Sprague Dawley rats on the first day of the study, followed by SLY (25 or 50 mg/kg/day) orally for 7 days. Then, various analyses were performed on liver and kidney tissues using biochemical, molecular and histological methods. The data obtained showed that DTX administration suppressed antioxidant markers and increased lipid peroxidation in liver and kidney tissues. It was also determined that DTX administration triggered markers of endoplasmic reticulum stress, inflammation, apoptosis and autophagy. On the other hand, SLY treatment increased enzymatic and non-enzymatic antioxidant levels and decreased malondialdehyde levels. Additionally, SLY alleviated DTX-induced endoplasmic reticulum stress, inflammation, apoptosis and autophagy in liver and kidney tissues. Immunohistochemical analyses showed that DTX increased the density of 8-OHdG positive cells in liver and kidney tissues, while oxidative DNA damage decreased after SLY administration. ALT, AST, ALP, Urea and Creatinine levels increased in the DTX group and decreased in the SLY treatment groups. In conclusion, DTX administration caused toxicity in liver and kidney tissues and damaged tissue integrity, while SLY treatment alleviated DTX-induced toxicity.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115202"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2024.115202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately 20 million new cancer cases have occurred worldwide, and dose limitation occurs because of the liver and kidney toxicity of chemotherapeutic agents. Inflammation/apoptosis/ROS pathways appear to be activated in the liver and kidney toxicity of chemotherapeutic agents. This study was conducted to investigate the potential effects of silymarin (SLY) use against docetaxel (DTX)-induced liver and kidney damage in rats. For this purpose, 30 mg/kg DTX was administered intraperitoneally to Sprague Dawley rats on the first day of the study, followed by SLY (25 or 50 mg/kg/day) orally for 7 days. Then, various analyses were performed on liver and kidney tissues using biochemical, molecular and histological methods. The data obtained showed that DTX administration suppressed antioxidant markers and increased lipid peroxidation in liver and kidney tissues. It was also determined that DTX administration triggered markers of endoplasmic reticulum stress, inflammation, apoptosis and autophagy. On the other hand, SLY treatment increased enzymatic and non-enzymatic antioxidant levels and decreased malondialdehyde levels. Additionally, SLY alleviated DTX-induced endoplasmic reticulum stress, inflammation, apoptosis and autophagy in liver and kidney tissues. Immunohistochemical analyses showed that DTX increased the density of 8-OHdG positive cells in liver and kidney tissues, while oxidative DNA damage decreased after SLY administration. ALT, AST, ALP, Urea and Creatinine levels increased in the DTX group and decreased in the SLY treatment groups. In conclusion, DTX administration caused toxicity in liver and kidney tissues and damaged tissue integrity, while SLY treatment alleviated DTX-induced toxicity.

水飞蓟素可抑制氧化应激、内质网应激、炎症、细胞凋亡和自噬信号通路,从而减轻多西他赛诱导的大鼠肝脏和肾脏毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信