Identifying climate refugia for vulnerable marine ecosystem indicator taxa under future climate change scenarios.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Edoardo Zelli, Joanne Ellis, Conrad Pilditch, Ashley A Rowden, Owen F Anderson, Shane W Geange, David A Bowden, Fabrice Stephenson
{"title":"Identifying climate refugia for vulnerable marine ecosystem indicator taxa under future climate change scenarios.","authors":"Edoardo Zelli, Joanne Ellis, Conrad Pilditch, Ashley A Rowden, Owen F Anderson, Shane W Geange, David A Bowden, Fabrice Stephenson","doi":"10.1016/j.jenvman.2024.122635","DOIUrl":null,"url":null,"abstract":"<p><p>Vulnerable Marine Ecosystems (VMEs) are recognised as having high ecological significance and susceptibility to disturbances, including climate change. One approach to providing information on the location and biological composition of these ecosystems, especially in difficult-to-reach environments such as the deep sea, is to generate spatial predictions for VME indicator taxa. In this study, the Random Forest algorithm was used to model the spatial distribution of density for 14 deep-water VME indicator taxa under current environmental conditions and future climate change scenarios (SSP2-4.5 and SSP3-7.0) within the New Zealand Territorial Sea and Exclusive Economic Zone (100-1500 m water depth) to evaluate potential changes in the location and distribution of density of these taxa over time. Overall, our species distribution models performed well for all taxa (mean AUC = 0.82; TSS = 0.56; r = 0.40) and predicted a considerable average reduction in density (54%) and habitat extent (61%), by the end of the 21st century under both climate change scenarios. Nevertheless, models identified regions that might serve as internal refugia (approximately 158,000 km<sup>2</sup>), where some taxa are predicted to maintain the high densities predicted for current-day environmental conditions under future climatic conditions, and external refugia (approximately 121,000 km<sup>2</sup>) where taxa were predicted to expand into new locations by the end of the 21st century. Our results represent a significant step forward as they provide predictions of the distribution of taxa densities, rather than just occurrence, under both present and future climatic conditions. Furthermore, these findings carry implications for ecosystem management and spatial planning, suggesting current marine spatial protection measures may not offer adequate protection to VME indicator taxa in the face of climate change. Additionally, activities like bottom trawling, present or future, may jeopardize climate refugia viability. Thus, a comprehensive assessment of cumulative effects on VME indicator taxa is recommended to establish effective protection measures for potential climate refugia, ensuring the continuity of essential ecosystem services.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"122635"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.122635","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vulnerable Marine Ecosystems (VMEs) are recognised as having high ecological significance and susceptibility to disturbances, including climate change. One approach to providing information on the location and biological composition of these ecosystems, especially in difficult-to-reach environments such as the deep sea, is to generate spatial predictions for VME indicator taxa. In this study, the Random Forest algorithm was used to model the spatial distribution of density for 14 deep-water VME indicator taxa under current environmental conditions and future climate change scenarios (SSP2-4.5 and SSP3-7.0) within the New Zealand Territorial Sea and Exclusive Economic Zone (100-1500 m water depth) to evaluate potential changes in the location and distribution of density of these taxa over time. Overall, our species distribution models performed well for all taxa (mean AUC = 0.82; TSS = 0.56; r = 0.40) and predicted a considerable average reduction in density (54%) and habitat extent (61%), by the end of the 21st century under both climate change scenarios. Nevertheless, models identified regions that might serve as internal refugia (approximately 158,000 km2), where some taxa are predicted to maintain the high densities predicted for current-day environmental conditions under future climatic conditions, and external refugia (approximately 121,000 km2) where taxa were predicted to expand into new locations by the end of the 21st century. Our results represent a significant step forward as they provide predictions of the distribution of taxa densities, rather than just occurrence, under both present and future climatic conditions. Furthermore, these findings carry implications for ecosystem management and spatial planning, suggesting current marine spatial protection measures may not offer adequate protection to VME indicator taxa in the face of climate change. Additionally, activities like bottom trawling, present or future, may jeopardize climate refugia viability. Thus, a comprehensive assessment of cumulative effects on VME indicator taxa is recommended to establish effective protection measures for potential climate refugia, ensuring the continuity of essential ecosystem services.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信