Generative AI: driving productivity and scientific breakthroughs in pharmaceutical R&D

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Guy Doron , Sam Genway , Mark Roberts , Sai Jasti
{"title":"Generative AI: driving productivity and scientific breakthroughs in pharmaceutical R&D","authors":"Guy Doron ,&nbsp;Sam Genway ,&nbsp;Mark Roberts ,&nbsp;Sai Jasti","doi":"10.1016/j.drudis.2024.104272","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of generative artificial intelligence (AI) is reshaping pharmaceutical research and development (R&amp;D), offering opportunities across drug discovery and development. Generative AI (GenAI) enhances productivity by enabling virtual assistants, which help automate routine tasks. It advances novel small-molecule drug design and drives new machine learning (ML) applications through synthetic data generation. Further impact is anticipated in drug development from improving operational efficiencies to novel digital innovations. Converging technologies enable rich data set capture, and next-generation AI will enable rapid, automated hypothesis generation and testing. Here, we assess the current and future applications, and the mid-term and long-term transformative potential, of GenAI in pharmaceutical R&amp;D.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 1","pages":"Article 104272"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624003970","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of generative artificial intelligence (AI) is reshaping pharmaceutical research and development (R&D), offering opportunities across drug discovery and development. Generative AI (GenAI) enhances productivity by enabling virtual assistants, which help automate routine tasks. It advances novel small-molecule drug design and drives new machine learning (ML) applications through synthetic data generation. Further impact is anticipated in drug development from improving operational efficiencies to novel digital innovations. Converging technologies enable rich data set capture, and next-generation AI will enable rapid, automated hypothesis generation and testing. Here, we assess the current and future applications, and the mid-term and long-term transformative potential, of GenAI in pharmaceutical R&D.
生成式人工智能:推动制药研发的生产力和科学突破。
生成式人工智能(AI)的快速发展正在重塑药物研究与开发(R&D),为药物发现和开发提供了机会。生成式人工智能(GenAI)通过启用虚拟助手来提高生产力,虚拟助手有助于自动化日常任务。它推进了新的小分子药物设计,并通过合成数据生成驱动新的机器学习(ML)应用。从提高运营效率到新颖的数字创新,预计将对药物开发产生进一步的影响。融合技术能够捕获丰富的数据集,下一代人工智能将实现快速、自动化的假设生成和测试。在这里,我们评估了GenAI在药物研发中的当前和未来应用,以及中期和长期的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信