{"title":"Simultaneous enhancement of activity and stability of Bacillus safensis-derived laccase and its application in lignocellulose saccharification.","authors":"Wenhua Yang, Xiangyang Ma, Hui Sun, Jiahui Wang, Jiyan Li, Xiuxiu Chu, Jianli Zhou, Fuping Lu, Yihan Liu","doi":"10.1016/j.biortech.2024.131983","DOIUrl":null,"url":null,"abstract":"<p><p>Effective hydrolysis of lignocelluloses for producing reducing sugar is impeded by the covalent binding of hemicellulose and cellulose through lignin, which could be eliminated by laccases. This study identified a novel thermostable laccase from Bacillus safensis TCCC 111022 and created an iterative mutant E231D/Y441H, exhibiting 1.59-fold greater specific activity and a 183 % greater half-life at 80°C than the wild-type enzyme. Computational analysis revealed that the stability and activity of the E231D/Y441H could be simultaneously enhanced by increasing the flexibility of the ring around the substrate binding pocket. Additionally, the saccharification efficiency of sugarcane bagasse and corn stalks were both enhanced by 235 % in the system adding E231D/Y441H, mixed-cellulases, and mediator (1-hydroxybenzotriazole) compared to the samples treated with mixed-cellulases. The findings of this research provide a reference for the degradation of lignocellulosic substrates and contribute to the sustainable development of biomass-based industries.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131983"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131983","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Effective hydrolysis of lignocelluloses for producing reducing sugar is impeded by the covalent binding of hemicellulose and cellulose through lignin, which could be eliminated by laccases. This study identified a novel thermostable laccase from Bacillus safensis TCCC 111022 and created an iterative mutant E231D/Y441H, exhibiting 1.59-fold greater specific activity and a 183 % greater half-life at 80°C than the wild-type enzyme. Computational analysis revealed that the stability and activity of the E231D/Y441H could be simultaneously enhanced by increasing the flexibility of the ring around the substrate binding pocket. Additionally, the saccharification efficiency of sugarcane bagasse and corn stalks were both enhanced by 235 % in the system adding E231D/Y441H, mixed-cellulases, and mediator (1-hydroxybenzotriazole) compared to the samples treated with mixed-cellulases. The findings of this research provide a reference for the degradation of lignocellulosic substrates and contribute to the sustainable development of biomass-based industries.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.